Редактирование: Вычисление порядка элемента в группе

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
== Постановка задачи ==
+
{{Требует доработки
Пусть <tex>G</tex> — [[группа]], <tex>a \in G</tex>. Требуется найти [[порядок элемента]] <tex>a</tex>.
+
|item1=(исправлено)Тут надо написать про алгоритм, который использует теорему Лагранжа. И работает за время <tex>O(\mathrm{FactorTime} \cdot \log |G|)</tex>.
 +
}}
  
== Решение ==
+
Пусть <tex>G</tex> - группа, <tex>a \in G</tex>.
По следствию из [[теорема Лагранжа|теоремы Лагранжа]] порядок элемента является делителем [[порядок группы|порядка группы]].  
+
По следствию из [[теорема Лагранжа|теоремы Лагранжа]] порядок элемента является делителем порядка группы.  
Таким образом достаточно рассмотреть <tex>a^n</tex>, где <tex>n \in X</tex>, <tex>X</tex> делители порядка группы.
+
Таким образом достаточно рассмотреть <tex>a^n</tex>, где <tex>n \in X</tex>, <tex>X</tex> - делители порядка группы.
  
=== Алгоритм ===
+
'''Алгоритм:'''
# Найти все делители <tex>|G|</tex> перебором от 1 до <tex>\sqrt{|G|}</tex>
 
# Для каждого делителя <tex>n</tex> проверить значение <tex>a^n</tex>. Наименьший <tex>n</tex>, такой что <tex>a^n = e</tex>, является порядком элемента <tex>a</tex> в группе.
 
  
=== Алгоритмическая сложность ===
+
1) Найти все делители <tex>|G|</tex> перебором от 1 до <tex>\sqrt{|G|}</tex>
Перебор от <tex>1</tex> до <tex>\sqrt{|G|}</tex> выполняется за <tex>O(\sqrt{|G|})</tex>. Возведение <tex>a</tex> в степень <tex>n</tex> выполняется за <tex>O(\log n)</tex>. Следовательно время выполнения <tex>O(\sqrt{|G|} \cdot \log{|G|})</tex>.
 
  
[[Категория:Теория групп]]
+
2) Для каждого делителя <tex>n</tex> проверить значение <tex>a^n</tex>. Наименьший n, такой что <tex>a^n = e</tex>, является порядком элемента <tex>a</tex> в группе.
 +
 
 +
 
 +
''Алгоритмическая сложность:'' Перебор от 1 до <tex>\sqrt{|G|}</tex> выполняется за <tex>O(\sqrt{|G|})</tex>. Возведение <tex>a</tex> в степень <tex>n</tex> выполняется за <tex>O(\log n)</tex>. Следовательно время выполнения <tex>O(\sqrt{|G|} \cdot \log{|G|})</tex>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)