Вычислимые числа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Свойства: еще две теоремы)
(Свойства: теорема про арифметику)
Строка 66: Строка 66:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Последовательность рациональных чисел <tex> \{ r_n \} </tex> вычислимо сходится к <tex> \alpha </tex>, если существует вычислимая функция <tex> N: \mathbb Q \rightarrow \mathbb N </tex>, такая, что для любого рационального <tex> \varepsilon > 0 </tex> выполняется <tex>\forall n > N(\varepsilon): |r_n - \alpha| < \varepsilon </tex>.
+
Последовательность рациональных чисел <tex> \{ r_n \} </tex> '''вычислимо сходится''' к <tex> \alpha </tex>, если существует вычислимая функция <tex> N: \mathbb Q \rightarrow \mathbb N </tex>, такая, что для любого рационального <tex> \varepsilon > 0 </tex> выполняется <tex>\forall n > N(\varepsilon): |r_n - \alpha| < \varepsilon </tex>.
 
}}
 
}}
  
Строка 86: Строка 86:
 
Пусть числа <tex> \alpha, \beta </tex> вычислимы. Тогда также вычислимы числа <tex> \alpha + \beta </tex>, <tex> \alpha - \beta </tex>, <tex> \alpha \beta </tex> и <tex> \frac \alpha \beta </tex>.
 
Пусть числа <tex> \alpha, \beta </tex> вычислимы. Тогда также вычислимы числа <tex> \alpha + \beta </tex>, <tex> \alpha - \beta </tex>, <tex> \alpha \beta </tex> и <tex> \frac \alpha \beta </tex>.
 
|proof=
 
|proof=
{{TODO|t=здесь должна появиться некоторая унылая арифметика}}
+
Заметим, что <tex> |(\alpha \pm \beta) - (a + b)| \le |\alpha - a| \pm |\beta - b| </tex>, значит, в качестве необходимых функций для <tex> \alpha + \beta </tex> и <tex> \alpha - \beta </tex> можно взять
 +
 
 +
<tex> a_{\alpha + \beta}(\varepsilon) = a_{\alpha}(\frac \varepsilon 2) + a_{\beta}(\frac \varepsilon 2) </tex>
 +
 
 +
и
 +
 
 +
<tex> a_{\alpha - \beta}(\varepsilon) = a_{\alpha}(\frac \varepsilon 2) - a_{\beta}(\frac \varepsilon 2) </tex>
 +
 
 +
соответственно.
 +
 
 +
Далее, так как <tex> |\alpha \beta - ab| = |(\alpha \beta - a \beta) + (a \beta - ab)| \le |\beta||\alpha - a| + |a||\beta - b| \le |b_\beta||\alpha - a| + |a||\beta - b|</tex>, где <tex> b_\beta \in Q, |b_\beta| > |\beta| </tex> (<tex> b_\beta </tex>, очевидно, можно найти за конечное время), то
 +
 
 +
<tex> a_{\alpha \beta}(\varepsilon) = a_{\alpha}(\frac \varepsilon {b_\beta}) a_{\beta}(\frac \varepsilon a) </tex>.
 +
 
 +
Убедимся в вычислимости числа <tex> \frac 1 \alpha </tex>:
 +
 
 +
<tex> |\frac 1 \alpha - \frac1a| \le \frac {|a - \alpha|}{a a_\alpha} </tex>, где <tex> a_\alpha \in Q, |a_\alpha| < |\alpha| </tex>.
 +
 
 +
<tex> a_{\frac 1 \alpha}(\varepsilon) = a_{\alpha}(\varepsilon a a_\alpha) </tex>.
 +
 
 +
Отсюда, <tex> \frac \alpha \beta = \frac1 \alpha \beta </tex> также вычислимо.
 +
 
 
}}
 
}}
  

Версия 20:20, 12 января 2013

В математике натуральные, целые и рациональные числа являются конструктивными объектами, поэтому их использование в теории вычислимости не требует особых уточнений. В то же время, действительные числа, которые необходимы для применения методов математического анализа, определяются неконструктивно. Предложенный далее метод позволяет построить конструктивные объекты, во многом схожие с обычными действительными числами.

Вычислимые числа

Определение:
Действительное число [math] \alpha [/math] называется вычислимым (computable number), если существует вычислимая функция [math] a: \mathbb Q \rightarrow \mathbb Q [/math], такая, что [math]|\alpha - a(\varepsilon)| \lt \varepsilon [/math] для любого рационального [math] \varepsilon \gt 0 [/math].


Свойства

Теорема:
Число [math] \alpha [/math] вычислимо тогда и только тогда, когда множество [math]A = \{x \in Q \mid x \lt \alpha \} [/math], разрешимо.
Доказательство:
[math]\triangleright[/math]

[math] \Longrightarrow [/math]:

Построим разрешатель для [math] A [/math]:

[math]p(x)[/math]:
  for [math] n = 1.. \infty [/math]:
    if [math] x \lt  a(\frac1n) - \frac1n [/math]:
      return 1
    if [math] x \gt  a(\frac1n) + \frac1n [/math]:
      return 0

[math] \Longleftarrow [/math]:

Построим функцию [math] a(\varepsilon) [/math]:

[math] a(\varepsilon) [/math]:
  for [math] x \in A [/math]:
    if [math] x + \varepsilon \notin A [/math]:
      return x
Так как [math] A [/math] разрешимо, [math] \alpha = \sup A [/math] и для любого [math] x \in A [/math] проверка в условном операторе завершается за конечное время, то функция [math] a(\varepsilon) [/math] вычислима для любого рационального [math] \varepsilon [/math].
[math]\triangleleft[/math]

С учетом только что доказанной теоремы, далее при проверке на принадлежность числа [math] x [/math] множеству [math] A [/math] будем писать просто [math] x \lt \alpha [/math].

Теорема:
Число [math] \alpha [/math] вычислимо тогда и только тогда, когда последовательность знаков представляющей его двоичной записи вычислима.
Доказательство:
[math]\triangleright[/math]

[math] \Longrightarrow [/math]:

Если число [math] \alpha [/math] — рациональное, то необходимую последовательность можно получить, воспользовавшись стандартным алгоритмом перевода числа в двоичную систему счисления. Рассмотрим случай, когда [math] \alpha \in \mathbb R \setminus \mathbb Q [/math].

Очевидно, двоичная запись целой части [math] \alpha [/math] всегда вычислима (так как множество чисел, меньших [math] \alpha [/math], разрешимо, то можно перебрать все целые числа в порядке возрастания их абсолютных величин и найти наибольшее число, меньшее [math] \alpha [/math]), поэтому будем считать, что [math] \alpha \in (0; 1) [/math].

Напишем программу, которая по числу [math] n [/math] вычисляет [math] n [/math]-ный знак числа [math] \alpha [/math] после запятой:

[math]p(n)[/math]:
  l = 0, r = 1
  for [math] k = 1..n [/math]:
    [math] m = \frac{l+r}2 [/math]
    if [math] m \lt  \alpha[/math]:
      l = m, t = 1
    else:
      r = m, t = 0
  return t

[math] \Longleftarrow [/math]:

Для любого рационального [math] \varepsilon \gt 0 [/math], найдем [math] n: 2^{-n} \lt \varepsilon [/math], тогда в качестве значения функции [math] a(\varepsilon) [/math] можно взять часть последовательности знаков двоичной записи [math] \alpha [/math] с [math] n [/math] знаками после запятой.
[math]\triangleleft[/math]


Определение:
Последовательность рациональных чисел [math] \{ r_n \} [/math] вычислимо сходится к [math] \alpha [/math], если существует вычислимая функция [math] N: \mathbb Q \rightarrow \mathbb N [/math], такая, что для любого рационального [math] \varepsilon \gt 0 [/math] выполняется [math]\forall n \gt N(\varepsilon): |r_n - \alpha| \lt \varepsilon [/math].


Теорема:
Число [math] \alpha [/math] вычислимо тогда и только тогда, когда существует вычислимая последовательность рациональных чисел, вычислимо сходящаяся к [math] \alpha [/math].
Доказательство:
[math]\triangleright[/math]

[math] \Longrightarrow [/math]:

Так как [math] \alpha [/math] вычислимо, то, согласно предыдущей теореме, вычислима и его двоичная запись. Пусть [math] r_n [/math] — часть последовательности знаков двоичной записи [math] \alpha [/math] с [math] n [/math] знаками после запятой. Данная последовательность вычислима, а также вычислимо сходится к [math] \alpha [/math], так как [math] N(\varepsilon) = \lceil -\log_2 \varepsilon \rceil[/math].

[math] \Longleftarrow [/math]:

Пусть [math] a(\varepsilon) = r_{N(\varepsilon)} [/math], тогда [math] \alpha [/math] вычислимо по определению.
[math]\triangleleft[/math]
Теорема:
Пусть числа [math] \alpha, \beta [/math] вычислимы. Тогда также вычислимы числа [math] \alpha + \beta [/math], [math] \alpha - \beta [/math], [math] \alpha \beta [/math] и [math] \frac \alpha \beta [/math].
Доказательство:
[math]\triangleright[/math]

Заметим, что [math] |(\alpha \pm \beta) - (a + b)| \le |\alpha - a| \pm |\beta - b| [/math], значит, в качестве необходимых функций для [math] \alpha + \beta [/math] и [math] \alpha - \beta [/math] можно взять

[math] a_{\alpha + \beta}(\varepsilon) = a_{\alpha}(\frac \varepsilon 2) + a_{\beta}(\frac \varepsilon 2) [/math]

и

[math] a_{\alpha - \beta}(\varepsilon) = a_{\alpha}(\frac \varepsilon 2) - a_{\beta}(\frac \varepsilon 2) [/math]

соответственно.

Далее, так как [math] |\alpha \beta - ab| = |(\alpha \beta - a \beta) + (a \beta - ab)| \le |\beta||\alpha - a| + |a||\beta - b| \le |b_\beta||\alpha - a| + |a||\beta - b|[/math], где [math] b_\beta \in Q, |b_\beta| \gt |\beta| [/math] ([math] b_\beta [/math], очевидно, можно найти за конечное время), то

[math] a_{\alpha \beta}(\varepsilon) = a_{\alpha}(\frac \varepsilon {b_\beta}) a_{\beta}(\frac \varepsilon a) [/math].

Убедимся в вычислимости числа [math] \frac 1 \alpha [/math]:

[math] |\frac 1 \alpha - \frac1a| \le \frac {|a - \alpha|}{a a_\alpha} [/math], где [math] a_\alpha \in Q, |a_\alpha| \lt |\alpha| [/math].

[math] a_{\frac 1 \alpha}(\varepsilon) = a_{\alpha}(\varepsilon a a_\alpha) [/math].

Отсюда, [math] \frac \alpha \beta = \frac1 \alpha \beta [/math] также вычислимо.
[math]\triangleleft[/math]
Теорема:
Корень многочлена с вычислимыми коэффициентами вычислим.
Теорема:
Предел вычислимо сходящейся вычислимой последовательности вычислимых чисел вычислим.

Перечислимые числа

Определение:
Действительное число [math] \alpha [/math] называется перечислимым снизу (recursively enumerable number), если множество [math] \{ a \in Q \mid a \lt \alpha \} [/math] перечислимо.


Аналогично определяются перечислимые сверху числа.

Свойства

Теорема:
Число [math] \alpha [/math] перечислимо снизу тогда и только тогда, когда существует вычислимая возрастающая последовательность рациональных чисел, пределом которой является [math] \alpha [/math].
Теорема:
Число [math] \alpha [/math] вычислимо тогда и только тогда, когда оно перечислимо сверху и снизу.

Последовательность Шпеккера

Определение:
Пусть [math] A [/math] — некоторое перечислимое, но неразрешимое множество натуральных чисел. Занумеруем его элементы. Последовательностью Шпеккера [math] \{q_n\} [/math] называется последовательность рациональных чисел, [math]n[/math]-ный член которой определяется как [math] q_n = \sum\limits_{k=1}^{n} 2^{-A(n)-1} [/math].


Данная последовательность строго возрастает и ограничена числом [math] 1 [/math], следовательно, по признаку Вейерштрасса, она сходится.

Теорема:
Число [math] q = \lim\limits_{n \to \infty} q_n [/math] перечислимо снизу, но невычислимо.

Ссылки