Редактирование: Гамма-алгоритм

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 6: Строка 6:
 
Чтобы проверить планарность графа и произвести его плоскую укладку, удобно пользоваться гамма-алгоритмом.
 
Чтобы проверить планарность графа и произвести его плоскую укладку, удобно пользоваться гамма-алгоритмом.
  
== Входные данные ==
+
= Входные данные =
  
 
На вход алгоритму подаются графы со следующими свойствами:
 
На вход алгоритму подаются графы со следующими свойствами:
# Граф [[Отношение связности, компоненты связности|связный]].
+
# Граф связный,
# Граф содержит хотя бы один цикл.
+
# Граф содержит хотя бы один цикл,
 
# Граф не имеет [[Мост, эквивалентные определения|мостов]].
 
# Граф не имеет [[Мост, эквивалентные определения|мостов]].
  
Если нарушено свойство 1, то граф нужно укладывать отдельно по компонентам связности. Если нарушено свойство 2, то граф {{---}} дерево и [[Укладка дерева|нарисовать его плоскую укладку]] тривиально.  
+
Если нарушено свойство <tex>1</tex>, то граф нужно укладывать отдельно по компонентам связности. Если нарушено свойство <tex>2</tex>, то граф {{---}} дерево и нарисовать его плоскую укладку тривиально.  
  
Более подробно рассмотрим случай, когда в графе <tex>G</tex> нарушено свойство 3. Сначала все мосты нужно убрать, далее произвести отдельную укладку всех компонент следующим образом: уложим одну компоненту связности, а следующую компоненту, связанную с первой в графе <tex>G</tex> мостом, будем рисовать в той грани, в которой лежит вершина, принадлежащая мосту. Иначе может сложиться ситуация, когда концевая вершина моста будет находиться внутри плоского графа, а следующая компонента {{---}} снаружи. Таким образом мы сможем соединить мостом нужные вершины. Далее будем так поступать с каждой новой компонентой.
+
Более подробно рассмотрим случай, когда в графе <tex>G</tex> нарушено свойство <tex>3</tex>. Сначала все мосты нужно убрать, далее произвести отдельную укладку всех компонент следующим образом: уложим одну компоненту связности, а следующую компоненту, связанную с первой в графе <tex>G</tex> мостом, будем рисовать в той грани, в которой лежит вершина, принадлежащая мосту. Иначе может сложиться ситуация, когда концевая вершина моста будет находиться внутри плоского графа, а следующая компонента - снаружи. Таким образом мы сможем соединить мостом нужные вершины. Далее будем так поступать с каждой новой компонентой.
  
== Описание алгоритма ==
+
= Описание алгоритма =
  
 
Рассмотрим работу алгоритма, параллельно разбирая на примере каждый шаг.
 
Рассмотрим работу алгоритма, параллельно разбирая на примере каждый шаг.
Строка 26: Строка 26:
 
|}
 
|}
  
=== Инициализация ===
+
<tex>1.</tex> Первый этап - '''инициализация''' алгоритма.
  
Первый этап {{---}} '''инициализация''' алгоритма.
+
В графе <tex>G</tex> выбирается любой простой цикл и производится его укладка на плоскость. Пусть в примере это будет цикл <tex>\{1, 2, 3, 4, 5, 6\}</tex>. После его укладки получаем две грани: <tex>\Gamma_{1}</tex> и <tex>\Gamma_{2}</tex> (рис. 2).
 
 
В графе <tex>G</tex> выбирается [[Использование обхода в глубину для поиска цикла|любой простой цикл]] и производится его укладка на плоскость. Пусть в примере это будет цикл <tex>\{1, 2, 3, 4, 5, 6\}</tex>. После его укладки получаем две грани: <tex>\Gamma_{1}</tex> и <tex>\Gamma_{2}</tex> (рис. 2).
 
  
 
{| cellpadding="2"
 
{| cellpadding="2"
Строка 38: Строка 36:
 
Уже уложенную во время работы алгоритма часть будем обозначать <tex>G_{plane}</tex>. В примере сейчас <tex>G_{plane}</tex> {{---}} выбранный цикл <tex>\{1, 2, 3, 4, 5, 6\}</tex>.
 
Уже уложенную во время работы алгоритма часть будем обозначать <tex>G_{plane}</tex>. В примере сейчас <tex>G_{plane}</tex> {{---}} выбранный цикл <tex>\{1, 2, 3, 4, 5, 6\}</tex>.
  
=== Общий шаг ===
+
<tex>2.</tex> Второй этап - общий шаг.
 
 
Второй этап {{---}} общий шаг.
 
  
 
Построим множество '''сегментов'''. Каждый сегмент <tex>S</tex> относительно уже построенного <tex>G_{plane}</tex> представляет собой одно из двух:
 
Построим множество '''сегментов'''. Каждый сегмент <tex>S</tex> относительно уже построенного <tex>G_{plane}</tex> представляет собой одно из двух:
Строка 52: Строка 48:
 
|}
 
|}
  
Пусть в каком-то сегменте нет ни одной контактной вершины. В таком случае граф до выделения <tex>G_{plane}</tex> был несвязным, что противоречит условию. Пусть контактная вершина в сегменте только одна. Это значит, что в графе был мост или точка сочленения, чего быть не может так же по условию. Таким образом, в каждом сегменте имеется не менее двух контактных вершин. Соответственно, в каждом сегменте есть цепь между любой парой контактных вершин.
+
Пусть в каком-то сегменте нет ни одной контактной вершины. В таком случае граф до выделения <tex>G_{plane}</tex> был несвязным, что противоречит условию. Пусть контактная вершина в сегменте только одна. Это значит, что в графе был мост, чего быть не может так же по условию. Таким образом, в каждом сегменте имеется не менее двух контактных вершин. Соответственно, в каждом сегменте есть цепь между любой парой контактных вершин.
  
 
Пусть грань <tex>\Gamma</tex> '''вмещает''' сегмент <tex>S</tex>, если номера всех контактных вершин <tex>S</tex> принадлежат этой грани, <tex>S \subset \Gamma</tex>. Очевидно, таких граней может быть несколько. Множество таких граней обозначим <tex>\Gamma(S)</tex>, а их число {{---}} <tex>|\Gamma(S)|</tex>.
 
Пусть грань <tex>\Gamma</tex> '''вмещает''' сегмент <tex>S</tex>, если номера всех контактных вершин <tex>S</tex> принадлежат этой грани, <tex>S \subset \Gamma</tex>. Очевидно, таких граней может быть несколько. Множество таких граней обозначим <tex>\Gamma(S)</tex>, а их число {{---}} <tex>|\Gamma(S)|</tex>.
Строка 65: Строка 61:
  
  
Третий и последующие этапы аналогичны второму. Повторять вышеуказанные действия нужно либо до тех пор, пока не будет получена плоская укладка, то есть множество сегментов не останется пустым, либо пока не будет получено, что граф не планарен.  
+
<tex>3.</tex> Третий и последующие этапы аналогичны второму. Повторять вышеуказанные действия нужно либо до тех пор, пока не будет получена плоская укладка, то есть множество сегментов не останется пустым, либо пока не будет получено, что граф не планарен.  
  
 
Разберем пример до конца. Повторим снова общий шаг. Теперь <tex>|\Gamma(S_{1})| = |\Gamma(S_{3})| = 1</tex>, <tex>|\Gamma(S_{2})| = |\Gamma(S_{4})| = 2</tex>. Возьмем <tex>S_{1}</tex>. В ней цепь <tex>\{2, 5\}</tex>, которую мы уложим в грань <tex>\Gamma_{2}</tex>, после чего этот сегмент исчезнет. Теперь картина будет следующая (рис. 5):
 
Разберем пример до конца. Повторим снова общий шаг. Теперь <tex>|\Gamma(S_{1})| = |\Gamma(S_{3})| = 1</tex>, <tex>|\Gamma(S_{2})| = |\Gamma(S_{4})| = 2</tex>. Возьмем <tex>S_{1}</tex>. В ней цепь <tex>\{2, 5\}</tex>, которую мы уложим в грань <tex>\Gamma_{2}</tex>, после чего этот сегмент исчезнет. Теперь картина будет следующая (рис. 5):
Строка 97: Строка 93:
 
# Либо получена плоская укладка графа, либо граф оказался не планарен.
 
# Либо получена плоская укладка графа, либо граф оказался не планарен.
  
== Доказательство корректности гамма-алгоритма ==
+
= Доказательство корректности гамма-алгоритма =
  
 
Перед доказательством корректности приведем ряд важных вспомогательных лемм.  
 
Перед доказательством корректности приведем ряд важных вспомогательных лемм.  
Строка 114: Строка 110:
 
|id=lemma1
 
|id=lemma1
 
|about=1
 
|about=1
|statement=Конфликтующие сегменты <tex>S_{1}</tex> и <tex>S_{2}</tex> обладают следующим свойством: если <tex>|\Gamma(S_{1})| \geqslant 2</tex> и <tex>|\Gamma(S_{2})| \geqslant 2</tex>, то <tex>\Gamma(S_{1}) = \Gamma(S_{2}) = 2</tex>.
+
|statement=Конфликтующие сегменты <tex>S_{1}</tex> и <tex>S_{2}</tex> обладают следующим свойством: если <tex>|\Gamma(S_{1})| \geq 2</tex> и <tex>|\Gamma(S_{2})| \geq 2</tex>, то <tex>\Gamma(S_{1}) = \Gamma(S_{2}) = 2</tex>.
  
 
|proof=Сначала докажем, что <tex>\Gamma(S_{1}) = \Gamma(S_{2})</tex>. Предположим противное. Тогда по условию леммы найдутся три различные грани <tex>\Gamma_{1},  \Gamma_{2}</tex> и <tex>\Gamma_{3}</tex> такие, что <tex>\Gamma_{1} \in \Gamma(S_{1}), \Gamma_{2} \in \Gamma(S_{2}), \Gamma_{3} \in Q = \Gamma(S_{1}) \cap \Gamma(S_{2}) \neq \emptyset</tex>. Тогда любые цепи <tex>L_{1} \subset S_{1}</tex> и <tex>L_{2} \subset S_{2}</tex> укладываются в <tex>\Gamma_{1}</tex> и <tex>\Gamma_{2}</tex> соответственно. Но это значит, что любая пара цепей <tex>L_{1}</tex> и <tex>L_{2}</tex> одновременно укладывается вне грани <tex>\Gamma_{3}</tex>. Следовательно, они одновременно укладываются и внутри грани <tex>\Gamma_{3}</tex>, причем без пересечений. Но это противоречит тому, что <tex>S_{1}</tex> и <tex>S_{2}</tex> {{---}} конфликтующие сегменты. Таким образом, <tex>\Gamma(S_{1}) = \Gamma(S_{2})</tex>.
 
|proof=Сначала докажем, что <tex>\Gamma(S_{1}) = \Gamma(S_{2})</tex>. Предположим противное. Тогда по условию леммы найдутся три различные грани <tex>\Gamma_{1},  \Gamma_{2}</tex> и <tex>\Gamma_{3}</tex> такие, что <tex>\Gamma_{1} \in \Gamma(S_{1}), \Gamma_{2} \in \Gamma(S_{2}), \Gamma_{3} \in Q = \Gamma(S_{1}) \cap \Gamma(S_{2}) \neq \emptyset</tex>. Тогда любые цепи <tex>L_{1} \subset S_{1}</tex> и <tex>L_{2} \subset S_{2}</tex> укладываются в <tex>\Gamma_{1}</tex> и <tex>\Gamma_{2}</tex> соответственно. Но это значит, что любая пара цепей <tex>L_{1}</tex> и <tex>L_{2}</tex> одновременно укладывается вне грани <tex>\Gamma_{3}</tex>. Следовательно, они одновременно укладываются и внутри грани <tex>\Gamma_{3}</tex>, причем без пересечений. Но это противоречит тому, что <tex>S_{1}</tex> и <tex>S_{2}</tex> {{---}} конфликтующие сегменты. Таким образом, <tex>\Gamma(S_{1}) = \Gamma(S_{2})</tex>.
  
Теперь покажем, что <tex>|Q| = 2</tex>. Доказательство снова поведем методом от противного. Пусть <tex>|Q| \geqslant 3</tex>. Тогда снова существует три различные грани <tex>\Gamma_{1},  \Gamma_{2}</tex> и <tex>\Gamma_{3} \in Q</tex>. Аналогичными рассуждениями снова приходим к противоречию с тем, что <tex>S_{1}</tex> и <tex>S_{2}</tex> {{---}} конфликтующие сегменты.  
+
Теперь покажем, что <tex>|Q| = 2</tex>. Доказательство снова поведем методом от противного. Пусть <tex>|Q| \geq 3</tex>. Тогда снова существует три различные грани <tex>\Gamma_{1},  \Gamma_{2}</tex> и <tex>\Gamma_{3} \in Q</tex>. Аналогичными рассуждениями снова приходим к противоречию с тем, что <tex>S_{1}</tex> и <tex>S_{2}</tex> {{---}} конфликтующие сегменты.  
 
}}
 
}}
  
Строка 141: Строка 137:
 
|id=lemma2
 
|id=lemma2
 
|about=2
 
|about=2
|statement=Если результатом некоторого шага работы гамма-алгоритма является частичная укладка <tex>G'</tex> планарного графа <tex>G</tex> такая, что <tex>|\Gamma(S)| \geqslant 2</tex> для любого сегмента <tex>S</tex> относительно <tex>G'</tex>, то <tex>A(G')</tex> {{---}} [[Двудольные графы и раскраска в 2 цвета|двудольный граф]].
+
|statement=Если результатом некоторого шага работы гамма-алгоритма является частичная укладка <tex>G'</tex> планарного графа <tex>G</tex> такая, что <tex>|\Gamma(S)| \geq 2</tex> для любого сегмента <tex>S</tex> относительно <tex>G'</tex>, то <tex>A(G')</tex> {{---}} [[Двудольные графы и раскраска в 2 цвета|двудольный граф]].
  
|proof=Докажем от противного. Пусть <tex>A(G')</tex> {{---}} не двудольный. Тогда по [[Двудольные графы и раскраска в 2 цвета#Теорема Кенига|теореме Кенинга]] в нем есть цикл нечетной длины. Этому циклу соответствует некоторая последовательность сегментов  <tex>S_{1}, S_{2}, \cdots S_{2m+1}, S_{1}</tex> относительно <tex>G'</tex>, в которой каждые соседние сегменты конфликтующие по определению. По лемме 1 <tex>\Gamma(S_{i}) = \{\Gamma_{1}, \Gamma_{2}\}, i \in \{1 \cdots 2m+1\}</tex>. Так как <tex>G'</tex> {{---}} частичная укладка графа, то все сегменты <tex>S_{1}, S_{2}, \cdots S_{2m+1}</tex> могут быть уложены. А так как соседние сегменты этой последовательности конфликтующие, то они должны быть уложены в разные грани, что невозможно, так как число сегментов в последовательности нечетное. Получили противоречие. Следовательно, <tex>A(G')</tex> {{---}} двудольный.
+
|proof=Докажем от противного. Пусть <tex>A(G')</tex> {{---}} не двудольный. Тогда по [http://neerc.ifmo.ru/wiki/index.php?title=%D0%94%D0%B2%D1%83%D0%B4%D0%BE%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D0%B3%D1%80%D0%B0%D1%84%D1%8B_%D0%B8_%D1%80%D0%B0%D1%81%D0%BA%D1%80%D0%B0%D1%81%D0%BA%D0%B0_%D0%B2_2_%D1%86%D0%B2%D0%B5%D1%82%D0%B0#.D0.A2.D0.B5.D0.BE.D1.80.D0.B5.D0.BC.D0.B0_.D0.9A.D0.B5.D0.BD.D0.B8.D0.B3.D0.B0 теореме Кенинга] в нем есть цикл нечетной длины. Этому циклу соответствует некоторая последовательность сегментов  <tex>S_{1}, S_{2}, \cdots S_{2m+1}, S_{1}</tex> относительно <tex>G'</tex>, в которой каждые соседние сегменты конфликтующие по определению. По лемме 1 <tex>\Gamma(S_{i}) = \{\Gamma_{1}, \Gamma_{2}\}, i \in \{1 \cdots 2m+1\}</tex>. Так как <tex>G'</tex> {{---}} частичная укладка графа, то все сегменты <tex>S_{1}, S_{2}, \cdots S_{2m+1}</tex> могут быть уложены. А так как соседние сегменты этой последовательности конфликтующие, то они должны быть уложены в разные грани, что невозможно, так как число сегментов в последовательности нечетное. Получили противоречие. Следовательно, <tex>A(G')</tex> {{---}} двудольный.
 
}}
 
}}
  
Строка 159: Строка 155:
 
Заметим, что на текущем шаге нет такого сегмента <tex>S</tex> относительно <tex>G'_{k-1}</tex>, для которого бы выполнялось равенство <tex>\Gamma(S) = \emptyset</tex>, так как в противном случае существовала бы цепь этого сегмента, контактные вершины которой принадлежали бы разным граням и укладка которой была бы невозможна. Следовательно, нельзя было бы уложить <tex>S</tex>,что противоречит тому, что <tex>G</tex> {{---}} планарный граф. Значит, мы можем рассматривать только следующие два случая:  
 
Заметим, что на текущем шаге нет такого сегмента <tex>S</tex> относительно <tex>G'_{k-1}</tex>, для которого бы выполнялось равенство <tex>\Gamma(S) = \emptyset</tex>, так как в противном случае существовала бы цепь этого сегмента, контактные вершины которой принадлежали бы разным граням и укладка которой была бы невозможна. Следовательно, нельзя было бы уложить <tex>S</tex>,что противоречит тому, что <tex>G</tex> {{---}} планарный граф. Значит, мы можем рассматривать только следующие два случая:  
  
1. Существует сегмент <tex>S</tex> для которого есть единственная вмещающая грань <tex>\Gamma</tex>, то есть <tex>|\Gamma(S)| = 1</tex>. Так как только грани <tex>\Gamma</tex> принадлежат все контактные вершины <tex>S</tex>, то укладка этого сегмента в эту грань неизбежна. Это значит, что помещая любую цепь <tex>L \subset S</tex>, снова получим частичную укладку графа.
+
<tex>1.</tex> Существует сегмент <tex>S</tex> для которого есть единственная вмещающая грань <tex>\Gamma</tex>, то есть <tex>|\Gamma(S)| = 1</tex>. Так как только грани <tex>\Gamma</tex> принадлежат все контактные вершины <tex>S</tex>, то укладка этого сегмента в эту грань неизбежна. Это значит, что помещая любую цепь <tex>L \subset S</tex>, снова получим частичную укладку графа.
  
2. Для любого сегмента <tex>S</tex> <tex>|\Gamma(S)| \geqslant 2</tex>. Построим граф <tex>A(G'_{k-1})</tex>, который по лемме 2 является двудольным. Рассмотрим его связную компоненту <tex>K</tex>, которая содержит не менее двух вершин. Граф <tex>K</tex> также является двудольным. По лемме 1 для любого сегмента <tex>S \in K</tex> справедливо <tex>\Gamma(S) = \{\Gamma_{1}, \Gamma_{2}\}</tex>. Так как граф <tex>K</tex> двудольный, то мы можем по очереди помещать сегменты <tex>K</tex> в разные грани, причем конфликтующих сегментов не возникнет в силу четности всех циклов в графе. Результатом будет частичная укладка графа.
+
<tex>2.</tex> Для любого сегмента <tex>S</tex> <tex>|\Gamma(S)| \geq 2</tex>. Построим граф <tex>A(G'_{k-1})</tex>, который по лемме 2 является двудольным. Рассмотрим его связную компоненту <tex>K</tex>, которая содержит не менее двух вершин. Граф <tex>K</tex> также является двудольным. По лемме 1 для любого сегмента <tex>S \in K</tex> справедливо <tex>\Gamma(S) = \{\Gamma_{1}, \Gamma_{2}\}</tex>. Так как граф <tex>K</tex> двудольный, то мы можем по очереди помещать сегменты <tex>K</tex> в разные грани, причем конфликтующих сегментов не возникнет в силу четности всех циклов в графе. Результатом будет частичная укладка графа.
  
 
Таким образом, на каждом шаге мы получаем частичную укладку графа, что доказывает корректность гамма-алгоритма.
 
Таким образом, на каждом шаге мы получаем частичную укладку графа, что доказывает корректность гамма-алгоритма.
Строка 169: Строка 165:
  
 
'''Следствие:''' Если на каком-то шаге встретился сегмент <tex>S</tex>, для которого нет вмещающей грани, то граф непланарный.
 
'''Следствие:''' Если на каком-то шаге встретился сегмент <tex>S</tex>, для которого нет вмещающей грани, то граф непланарный.
 
==См. также==
 
* [[Теорема Понтрягина-Куратовского|Теорема Понтрягина-Куратовского]]
 
* [[Теорема Фари|Теорема Фари]]
 
 
== Источники информации ==
 
* [http://rain.ifmo.ru/cat/view.php/theory/graph-coloring-layout/layout-2004 Дискретная математика: алгоритмы]
 
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Укладки графов ]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)