Изменения

Перейти к: навигация, поиск

Гамма-алгоритм

111 байт убрано, 23:44, 1 марта 2019
Точки сочленения
# Граф содержит хотя бы один цикл.
# Граф не имеет [[Мост, эквивалентные определения|мостов]].
# Граф не имеет точек сочленения.
Если нарушено свойство 1, то граф нужно укладывать отдельно по компонентам связности. Если нарушено свойство 2, то граф {{---}} дерево и [[Укладка дерева|нарисовать его плоскую укладку]] тривиально.
=== Общий шаг ===
Второй этап {{- --}} общий шаг.
Построим множество '''сегментов'''. Каждый сегмент <tex>S</tex> относительно уже построенного <tex>G_{plane}</tex> представляет собой одно из двух:
|}
Пусть в каком-то сегменте нет ни одной контактной вершины. В таком случае граф до выделения <tex>G_{plane}</tex> был несвязным, что противоречит условию. Пусть контактная вершина в сегменте только одна. Это значит, что в графе был мостили точка сочленения, чего быть не может так же по условию. Таким образом, в каждом сегменте имеется не менее двух контактных вершин. Соответственно, в каждом сегменте есть цепь между любой парой контактных вершин.
Пусть грань <tex>\Gamma</tex> '''вмещает''' сегмент <tex>S</tex>, если номера всех контактных вершин <tex>S</tex> принадлежат этой грани, <tex>S \subset \Gamma</tex>. Очевидно, таких граней может быть несколько. Множество таких граней обозначим <tex>\Gamma(S)</tex>, а их число {{---}} <tex>|\Gamma(S)|</tex>.
|statement=Если результатом некоторого шага работы гамма-алгоритма является частичная укладка <tex>G'</tex> планарного графа <tex>G</tex> такая, что <tex>|\Gamma(S)| \geqslant 2</tex> для любого сегмента <tex>S</tex> относительно <tex>G'</tex>, то <tex>A(G')</tex> {{---}} [[Двудольные графы и раскраска в 2 цвета|двудольный граф]].
|proof=Докажем от противного. Пусть <tex>A(G')</tex> {{---}} не двудольный. Тогда по [http://neerc.ifmo.ru/wiki/index.php?title=%D0%94%D0%B2%D1%83%D0%B4%D0%BE%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D0%B3%D1%80%D0%B0%D1%84%D1%8B_%D0%B8_%D1%80%D0%B0%D1%81%D0%BA%D1%80%D0%B0%D1%81%D0%BA%D0%B0_%D0%B2_2_%D1%86%D0%B2%D0%B5%D1%82%D0%B0[Двудольные графы и раскраска в 2 цвета#.D0.A2.D0.B5.D0.BE.D1.80.D0.B5.D0.BC.D0.B0_.D0.9A.D0.B5.D0.BD.D0.B8.D0.B3.D0.B0 Теорема Кенига|теореме Кенинга]] в нем есть цикл нечетной длины. Этому циклу соответствует некоторая последовательность сегментов <tex>S_{1}, S_{2}, \cdots S_{2m+1}, S_{1}</tex> относительно <tex>G'</tex>, в которой каждые соседние сегменты конфликтующие по определению. По лемме 1 <tex>\Gamma(S_{i}) = \{\Gamma_{1}, \Gamma_{2}\}, i \in \{1 \cdots 2m+1\}</tex>. Так как <tex>G'</tex> {{---}} частичная укладка графа, то все сегменты <tex>S_{1}, S_{2}, \cdots S_{2m+1}</tex> могут быть уложены. А так как соседние сегменты этой последовательности конфликтующие, то они должны быть уложены в разные грани, что невозможно, так как число сегментов в последовательности нечетное. Получили противоречие. Следовательно, <tex>A(G')</tex> {{---}} двудольный.
}}
Анонимный участник

Навигация