Редактирование: Генерация текста
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 17: | Строка 17: | ||
==== Что умеет GPT-2 ==== | ==== Что умеет GPT-2 ==== | ||
Изначально нейросеть обучали предсказывать следующее слово в предложении. Помимо основной задачи модель качественно генерирует образцы текста из-за использования трансформерной архитектуры и обучения на большом датасете. Таким образом, GPT-2 - не просто языковая модель, а мощный генератор текстов. | Изначально нейросеть обучали предсказывать следующее слово в предложении. Помимо основной задачи модель качественно генерирует образцы текста из-за использования трансформерной архитектуры и обучения на большом датасете. Таким образом, GPT-2 - не просто языковая модель, а мощный генератор текстов. | ||
− | ===== | + | ===== Что еще умеет? ===== |
#Краткий пересказ текста или обобщение. В качестве входных данных нужно подать не просто фрагмент, а целый текст, а модель выдаст краткое содержание рассказа. | #Краткий пересказ текста или обобщение. В качестве входных данных нужно подать не просто фрагмент, а целый текст, а модель выдаст краткое содержание рассказа. | ||
#Ответы на вопросы исходя из содержания текста. На входе подается несколько примеров в виде «Вопрос-Ответ», в конце же дается реальный вопрос, на который нейросеть выдает по тому же макету ответ. | #Ответы на вопросы исходя из содержания текста. На входе подается несколько примеров в виде «Вопрос-Ответ», в конце же дается реальный вопрос, на который нейросеть выдает по тому же макету ответ. |