Граница Чернова — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{{Определение
 +
  |definition = '''Граница Чернова''' (англ. ''Chernoff bound'') дает ,более .
 +
}}
  
== Граница Чернова ==
+
==Неравенство и его доказательство==
 
 
  {{Определение
 
  |definition = '''Граница Чернова''' (англ. ''Chernoff bound'') дает оценку вероятности того, что сумма <tex>n</tex> одинаково распределенных независимых случайных величин больше (или меньше) некоторого значения.
 
}}
 
 
{{Теорема
 
{{Теорема
 
| id = thChernov
 
| id = thChernov
Строка 10: Строка 9:
 
| statement = Пусть даны <tex>X_1 X_2 \ldots X_n</tex> {{---}} одинаково распределенные независимые случайные величины, принимающие значения из множества <tex>\{0, 1\}</tex>,
 
| statement = Пусть даны <tex>X_1 X_2 \ldots X_n</tex> {{---}} одинаково распределенные независимые случайные величины, принимающие значения из множества <tex>\{0, 1\}</tex>,
  
<tex>m = \mathbb{E} \sum_{i=1}^{n} X_i</tex>,
+
<tex>m = {E} \sum\limits_{i=1}^{n} X_i</tex>,
  
 
Тогда:
 
Тогда:
  
<tex>\mathbb{P} (|\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{n} m| \geqslant \delta) \leqslant 2e^{-2 \delta ^2 n}</tex>
+
<tex>{P} (|\dfrac{1}{n} \sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m| \geqslant \delta) \leqslant 2e^{-2 \delta ^2 n}</tex>
 
| proof = Так как <tex>X_1 X_2 \ldots X_n</tex> {{---}} одинаково распределенные и принимают значения из множества <tex>\{0, 1\}</tex>:
 
| proof = Так как <tex>X_1 X_2 \ldots X_n</tex> {{---}} одинаково распределенные и принимают значения из множества <tex>\{0, 1\}</tex>:
  
<tex>\mathbb {P}(X_i = 1) = p</tex>
+
<tex>{P}(X_i = 1) = p</tex>
  
<tex>\mathbb{P}{(X_i = 0) = 1 - p = q}</tex>
+
<tex>{P}{(X_i = 0) = 1 - p = q}</tex>
  
<tex>\mathbb {E} X_i = p</tex>
+
<tex>{E} X_i = p</tex>
  
  
Пусть <tex>\bar{X_i} = X_i - p</tex>, тогда <tex>\mathbb E\bar{X_i} = 0</tex>
+
Пусть <tex>\bar{X_i} = X_i - p</tex>, тогда <tex>{E}\bar{X_i} = 0</tex>
  
Преобразуем выражение <tex>\mathbb{P} (\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{n} m \geqslant \delta)</tex>. (<tex>t</tex> {{---}} любое положительное число):
+
Преобразуем выражение <tex>{P} (\dfrac{1}{n} \sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m \geqslant \delta)</tex>. (<tex>t</tex> {{---}} любое положительное число):
  
<tex>\mathbb{P}(\dfrac{1}{n}\sum_{i=1}^{n} X_i - \dfrac{1}{n} m \geqslant \delta) = \mathbb {P} (\dfrac{1}{n}\sum_{i=1}^{n}\bar{X_i} \geqslant \delta) = \mathbb {P}(e^{t\sum_{i=1}^{n} \bar{X_i}} \geqslant e^{t \delta n})</tex>
+
<tex>{P}(\dfrac{1}{n}\sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m \geqslant \delta) = {P} (\dfrac{1}{n}\sum\limits_{i=1}^{n}\bar{X_i} \geqslant \delta) = {P}(e^{t\sum\limits_{i=1}^{n} \bar{X_i}} \geqslant e^{t \delta n})</tex>
  
 
Используем [[Неравенство Маркова| неравенство Маркова]] для оценки полученного выражения:
 
Используем [[Неравенство Маркова| неравенство Маркова]] для оценки полученного выражения:
  
<tex>\mathbb {P}(e^{ t\sum_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant \dfrac{\mathbb{E} (e^{ t\sum_{i=1}^{n}\bar{X_i}})}{e^{t \delta n}}</tex>
+
<tex>{P}(e^{ t\sum\limits_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant \dfrac{{E} (e^{ t\sum\limits_{i=1}^{n}\bar{X_i}})}{e^{t \delta n}}</tex>
  
 
[[Математическое ожидание случайной величины| Матожидание]] можно преобразовать:
 
[[Математическое ожидание случайной величины| Матожидание]] можно преобразовать:
  
<tex>\mathbb{E} (e^{ t\sum_{i=1}^{n}\bar{X_i}}) = \prod_{i = 1}^{n}\mathbb{E}(e^{t \bar{X_i}})</tex>
+
<tex>{E} (e^{ t\sum\limits_{i=1}^{n}\bar{X_i}}) = \prod_{i = 1}^{n}{E}(e^{t \bar{X_i}})</tex>
  
Оценим <tex>\mathbb{E}(e^{t \bar{X_i}})</tex> с учётом того, что <tex>p \in [0, 1]</tex>
+
Оценим <tex>{E}(e^{t \bar{X_i}})</tex> с учётом того, что <tex>p \in [0, 1]</tex>
  
<tex>\mathbb{E}(e^{t \bar{X_i}}) = p e^{tq} + qe^{-pt} \leqslant e ^ {\frac{t^2}{8}}</tex>
+
<tex>{E}(e^{t \bar{X_i}}) = p e^{tq} + qe^{-pt} \leqslant e ^ {\frac{t^2}{8}}</tex>
  
<tex>\mathbb {P}(e^{ t\sum_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant \dfrac{e^{n\frac{t^2}{8}}}{e^{t \delta n}}</tex>
+
<tex>{P}(e^{ t\sum_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant \dfrac{e^{n\frac{t^2}{8}}}{e^{t \delta n}}</tex>
  
 
При <tex>t = 4\delta</tex>:
 
При <tex>t = 4\delta</tex>:
 
<tex>\mathbb {P}(e^{ t\sum_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant e^{-2 \delta^2 n}</tex>
 
<tex>\mathbb {P}(e^{ t\sum_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant e^{-2 \delta^2 n}</tex>
  
Аналогично доказывается, что: <tex>\mathbb{P} (\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{n} m \leqslant -\delta) \leqslant e^{-2 \delta^2 n}</tex>
+
Аналогично доказывается, что: <tex>{P} (\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{n} m \leqslant -\delta) \leqslant e^{-2 \delta^2 n}</tex>
  
Таким образом: <tex>\mathbb{P} (|\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{n} m| \geqslant \delta) \leqslant 2e^{-2 \delta ^2 n}</tex>
+
Таким образом: <tex>{P} (|\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{n} m| \geqslant \delta) \leqslant 2e^{-2 \delta ^2 n}</tex>
 
}}
 
}}
  
 
== Пример ==
 
== Пример ==
 
+
Граница Чернова используется, когда нужно оценить вероятность того, что сумма одинаково распределенных событий будет отличаться от матожидания этой суммы больше чем на <tex>\delta</tex>
 +
 
Пусть монетку подбросили 1000 раз. Оценить вероятность того, что выпало больше 550 орлов.
 
Пусть монетку подбросили 1000 раз. Оценить вероятность того, что выпало больше 550 орлов.
  
<tex>m = \mathbb{E} \sum_{i=1}^{n} X_i  = n\mathbb{E} X_i = \dfrac{n}{2}</tex>
+
<tex>m = {E} \sum_{i=1}^{n} X_i  = n{E} X_i = \dfrac{n}{2}</tex>
  
 
<tex>\delta = \dfrac{1}{20}</tex>
 
<tex>\delta = \dfrac{1}{20}</tex>
  
<tex>\mathbb{P} (|\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{2}| \geqslant \dfrac{1}{20}) \leqslant 2e^{-2 \dfrac{1000}{400}} = 2e^{-5}</tex>
+
<tex>{P} (|\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{2}| \geqslant \dfrac{1}{20}) \leqslant 2e^{-2 \dfrac{1000}{400}} = 2e^{-5}</tex>
  
 
== См. также ==
 
== См. также ==
Строка 68: Строка 68:
 
== Источники информации ==
 
== Источники информации ==
 
* [https://www.lektorium.tv/lecture/12871 Лекториум CS-центра {{---}} Лекция Дмитрия Ицыксона]
 
* [https://www.lektorium.tv/lecture/12871 Лекториум CS-центра {{---}} Лекция Дмитрия Ицыксона]
 +
 +
[[Категория: Дискретная математика и алгоритмы]]
 +
[[Категория: Теория вероятности]]

Версия 16:27, 20 апреля 2019

Определение:
Граница Чернова (англ. Chernoff bound) дает ,более .


Неравенство и его доказательство

Теорема (Граница Чернова):
Пусть даны [math]X_1 X_2 \ldots X_n[/math] — одинаково распределенные независимые случайные величины, принимающие значения из множества [math]\{0, 1\}[/math],

[math]m = {E} \sum\limits_{i=1}^{n} X_i[/math],

Тогда:

[math]{P} (|\dfrac{1}{n} \sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m| \geqslant \delta) \leqslant 2e^{-2 \delta ^2 n}[/math]
Доказательство:
[math]\triangleright[/math]

Так как [math]X_1 X_2 \ldots X_n[/math] — одинаково распределенные и принимают значения из множества [math]\{0, 1\}[/math]:

[math]{P}(X_i = 1) = p[/math]

[math]{P}{(X_i = 0) = 1 - p = q}[/math]

[math]{E} X_i = p[/math]


Пусть [math]\bar{X_i} = X_i - p[/math], тогда [math]{E}\bar{X_i} = 0[/math]

Преобразуем выражение [math]{P} (\dfrac{1}{n} \sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m \geqslant \delta)[/math]. ([math]t[/math] — любое положительное число):

[math]{P}(\dfrac{1}{n}\sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m \geqslant \delta) = {P} (\dfrac{1}{n}\sum\limits_{i=1}^{n}\bar{X_i} \geqslant \delta) = {P}(e^{t\sum\limits_{i=1}^{n} \bar{X_i}} \geqslant e^{t \delta n})[/math]

Используем неравенство Маркова для оценки полученного выражения:

[math]{P}(e^{ t\sum\limits_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant \dfrac{{E} (e^{ t\sum\limits_{i=1}^{n}\bar{X_i}})}{e^{t \delta n}}[/math]

Матожидание можно преобразовать:

[math]{E} (e^{ t\sum\limits_{i=1}^{n}\bar{X_i}}) = \prod_{i = 1}^{n}{E}(e^{t \bar{X_i}})[/math]

Оценим [math]{E}(e^{t \bar{X_i}})[/math] с учётом того, что [math]p \in [0, 1][/math]

[math]{E}(e^{t \bar{X_i}}) = p e^{tq} + qe^{-pt} \leqslant e ^ {\frac{t^2}{8}}[/math]

[math]{P}(e^{ t\sum_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant \dfrac{e^{n\frac{t^2}{8}}}{e^{t \delta n}}[/math]

При [math]t = 4\delta[/math]: [math]\mathbb {P}(e^{ t\sum_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant e^{-2 \delta^2 n}[/math]

Аналогично доказывается, что: [math]{P} (\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{n} m \leqslant -\delta) \leqslant e^{-2 \delta^2 n}[/math]

Таким образом: [math]{P} (|\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{n} m| \geqslant \delta) \leqslant 2e^{-2 \delta ^2 n}[/math]
[math]\triangleleft[/math]

Пример

Граница Чернова используется, когда нужно оценить вероятность того, что сумма одинаково распределенных событий будет отличаться от матожидания этой суммы больше чем на [math]\delta[/math]

Пусть монетку подбросили 1000 раз. Оценить вероятность того, что выпало больше 550 орлов.

[math]m = {E} \sum_{i=1}^{n} X_i = n{E} X_i = \dfrac{n}{2}[/math]

[math]\delta = \dfrac{1}{20}[/math]

[math]{P} (|\dfrac{1}{n} \sum_{i=1}^{n} X_i - \dfrac{1}{2}| \geqslant \dfrac{1}{20}) \leqslant 2e^{-2 \dfrac{1000}{400}} = 2e^{-5}[/math]

См. также

Источники информации