Группа

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Моноид [math]\langle G,\cdot\rangle[/math] называется группой, если для каждого элемента существует обратный:
[math]\forall x\in G : \exists x^{-1} \in G : x\cdot x^{-1}=x^{-1}\cdot x=e[/math]
где [math]e[/math] — нейтральный элемент моноида.
Утверждение (О единственности обратного элемента):
В группу для каждого элемента существует единственный обратный элемент.
[math]\triangleright[/math]

Действительно, пусть [math]y_1[/math] и [math]y_2[/math] — два обратных к [math]x[/math] элемента. Тогда имеем:

[math]y_1 = y_1\cdot e = y_1\cdot (x \cdot y_2) = (y_1\cdot x)\cdot y_2 = e\cdot y_2 = y_2[/math]
[math]\triangleleft[/math]

Примером группы является множество действительных чисел [math]\mathbb{R}[/math] c операцией сложения (но не умножения -- 0 не имеет в этом случае обратного элемента).

Абелева группа

Определение:
Группа [math]G[/math] называется абелевой, если ее операция коммутативна: для любых [math]a,b\in G[/math] выполнено [math]a\cdot b = b\cdot a[/math]. Абелевы группы иногда называют аддитивными, обозначая групповую операцию как [math]a+b[/math], обратный элемент как [math]-a[/math], нейтральный как [math]0[/math]. При этом запись [math]a-b[/math] понимают как [math]a+(-b)[/math].


Примером абелевой(аддитивной) группы является группа вещественных чисел с операцией сложения. Примером неабелевой — группа обратимых матриц с операцией обычного матричного умножения.

Конечная группа

Определение:
Группа называется конечной, если множество ее элементов конечно. Мощность множества элементов группы [math]G[/math] называют порядком группы и обозначают [math]\vert G\vert[/math].