Изменения

Перейти к: навигация, поиск

Двоичная куча

8981 байт добавлено, 19:30, 4 сентября 2022
м
rollbackEdits.php mass rollback
==Определение==
 
{{Определение
|definition=
'''Двоичная куча''' или '''пирамида''' (англ. ''Binary heap'') — такое двоичное [[Дерево, эквивалентные определения|подвешенное дерево]], для которого выполнены следующие три условия:
* Значение (ключ) в любой вершине не больше(если куча для минимума), чем значения её потомков.* На <tex>i</tex>-ом слое <tex>2^i</tex> вершин, кроме последнего. Слои нумеруются с нуля.* Полное двоичное деревоПоследний слой заполнен слева направо (как показано на рисунке)}}[[Файл:Min_heap.png‎|thumb|325px|Пример кучи для минимума]][[Файл:Min_heap_array.png‎|thumb|325px|Хранение кучи в массиве, красная стрелка {{---}} левый сын, зеленая {{---}} правый]]Удобнее всего двоичную кучу хранить в виде массива <tex>a[0..n-1]</tex>, у которого могут отсутствовать некоторые листья последнего слоянулевой элемент, <tex>a[0]</tex> — элемент в корне, а потомками элемента <tex>a[i]</tex> являются <tex>a[2i+1]</tex> и <tex>a[2i+2]</tex>. Высота кучи определяется как высота двоичного дерева. То есть она равна количеству рёбер в самом длинном простом пути, соединяющем корень кучи с одним из её листьев. Высота кучи есть <tex>O(\log{n})</tex>, где <tex>n</tex> — количество узлов дерева.
* Последний слой заполняется слева направоЧаще всего используют кучи для минимума (когда предок не больше детей) и для максимума (когда предок не меньше детей).}}
Удобная структура данных для сортирующего дерева — массив <tex>A</tex>Двоичные кучи используют, у которого первый элементнапример, <tex>A[1]</tex> — элемент в корне, а потомками элемента <tex>A[i]</tex> являются <tex>A[2i]</tex> и <tex>A[2i+1]</tex>. Высота кучи определяется как высота двоичного дерева. То есть она равна количеству рёбер в самом длинном простом путидля того, соединяющем корень кучи с одним чтобы извлекать минимум из её листьев. Высота кучи есть набора чисел за <tex>O(\log{Nn})</tex>, где <tex>N</tex> — количество узлов дерева. Они являются частным случаем приоритетных очередей.
==Базовые процедуры==
===Восстановление свойств кучи===
Если в куче изменяется один из элементов, то она может перестать удовлетворять свойству упорядоченности. Для восстановления этого свойства служат процедуры '''Sift_Down''' <tex> \mathrm {siftDown} </tex> (просеивание вниз) и '''Sift_Up''' <tex> \mathrm {siftUp} </tex> (просеивание вверх).  ====siftDown====Если значение измененного элемента увеличивается, то свойства кучи восстанавливаются функцией '''Sift_Down(i)'''<tex> \mathrm {siftDown} </tex>. Работа процедуры : если <tex>i</tex>-й элемент меньше, чем его сыновья, всё поддерево уже является кучей, и делать ничего не надо. В противном случае меняем местами <tex>i</tex>-й элемент с наименьшим из его сыновей, после чего выполняем '''Sift_Down(i)''' <tex> \mathrm {siftDown} </tex> для этого сына.Процедура выполняется за время <tex>O(\log{Nn})</tex>.
<codestyle="display:inline-block">Sift_Down '''function''' siftDown(i: '''int'''): '''while''' 2 * i + 1 < a.heapSize <font color = "green">// heapSize {{---}} количество элементов в куче</font> left = 2 * i + 1 <font color = "green">// left {{---}} левый сын</font> right = 2 * i + 1 2 <font color = "green">// right {{---}} правый сын <// heap_size - количество элементов в кучеfont> If ( j = left ≤ A '''if''' right < a.heap_size) heapSize '''and (A''' a[leftright] < Aa[ileft]) min j = leftright else min = '''if''' a[i If (right ≤ A.heap_size) and (A[right] < A= a[ij]) min = right else '''break''' min = i If swap(min <> i) Поменять Aa[i] и A, a[minimumj]) Sift_Down(min) i = j
</code>
Если значение измененного элемента уменьшается, то свойства кучи восстанавливаются функцией'''Sift_Up(i)'''.
Работа процедуры : если элемент больше своего отца====siftUp====Если значение измененного элемента уменьшается, условие 1 соблюдено для всего дерева, и больше ничего делать не нужно. Иначе, мы меняем местами его с отцом. После чего выполняем '''Sift_Up''' для этого отца. Иными словами, слишком большой элемент всплывает наверх.Процедура выполняется за время то свойства кучи восстанавливаются функцией <tex>O(\logmathrm {NsiftUp})</tex>.
Работа процедуры: если элемент больше своего отца, условие 1 соблюдено для всего дерева, и больше ничего делать не нужно. Иначе, мы меняем местами его с отцом. После чего выполняем <tex> \mathrm {siftUp} </tex>для этого отца. Иными словами, слишком маленький элемент всплывает наверх.Процедура выполняется за время <tex>O(\log{n})</tex>. <codestyle="display:inline-block">Sift_Up '''function''' siftUp(i: '''int'''): If (A '''while''' a[i] < Aa[(i - 1) / 2]) <font color = "green">// i <tex>==</tex> 0 {{---}} мы в корне</font> Поменять A swap(a[i] и A, a[(i - 1) / 2]) Sift_Up i = (i - 1) / 2)
</code>
===Извлечение минимального элемента===
Выполняет извлечение минимального элемента из кучи за время <tex>O(\log{Nn})</tex>.
Извлечение выполняется в четыре этапа:
# Значение корневого элемента (он и является минимальным) сохраняется для последующего возврата.
# Последний элемент копируется в корень, после чего удаляется из кучи.
# Вызывается '''Sift_Down(i)''' <math> \mathrm {siftDown} </math> для корня.
# Сохранённый элемент возвращается.
<code>extract_min '''int''' extractMin(): '''int''' min = Aa[10] A a[10] = Aa[Aa.heap_sizeheapSize - 1] A a.heap_size heapSize = Aa.heap_size heapSize - 1 Sift_Down siftDown(10) '''return ''' min ===Добавление нового элемента=== Выполняет добавление элемента в кучу за время <tex>O(\log{n})</tex>.Добавление произвольного элемента в конец кучи, и восстановление свойства упорядоченности с помощью процедуры <math> \mathrm {siftUp} </math>. <code style="display:inline-block"> '''function''' insert(key : '''int'''): a.heapSize = a.heapSize + 1 a[a.heapSize - 1] = key siftUp(a.heapSize - 1)
</code>
===Добавление нового Построение кучи за O(n) ==={{Определение | definition ='''<tex>D</tex>-куча''' {{---}} это куча, в которой у каждого элемента, кроме, возможно, элементов на последнем уровне, ровно <tex>d</tex> потомков. }} Дан массив <tex>a[0.. n - 1].</tex> Требуется построить <tex>d</tex>-кучу с минимумом в корне. Наиболее очевидный способ построить такую кучу из неупорядоченного массива {{---}} сделать нулевой элемент массива корнем, а дальше по очереди добавить все его элементы в конец кучи и запускать от каждого добавленного элемента <math>\mathrm {siftUp}</math>. Временная оценка такого алгоритма <tex> O(n\log{n})</tex>. Однако можно построить кучу еще быстрее — за <tex> O(n) </tex>.  Представим, что в массиве хранится дерево (<tex>a[0] - </tex> корень, а потомками элемента <tex>a[i]</tex> являются <tex>a[di+1]...a[di+d]</tex>). Сделаем <tex> \mathrm {siftDown} </tex> для вершин, имеющих хотя бы одного потомка: от <tex dpi=140>\dfrac{n}{d}</tex> до <tex>0</tex>,{{---}} так как поддеревья, состоящие из одной вершины без потомков, уже упорядочены.{{Лемма|statement= На выходе получим искомую кучу. |proof= До вызова <tex> \mathrm {siftDown} </tex> для вершины, ее поддеревья являются кучами. После выполнения <tex> \mathrm {siftDown} </tex> эта вершина с ее поддеревьями будут также являться кучей. Значит, после выполнения всех <tex> \mathrm {siftDown} </tex> получится куча.}}{{Лемма|statement= Время работы этого алгоритма <tex> O(n) </tex>.|proof= Число вершин на высоте <tex>h</tex> в куче из <tex>n</tex> элементов не превосходит <tex dpi = "160"> \left \lceil \frac{n}{d^h} \right \rceil </tex>. Высота кучи не превосходит <tex> \log_{d}n </tex>. Обозначим за <tex> H </tex> высоту дерева, тогда время построения не превосходит <tex dpi = "160"> \sum_{h = 1}^H \limits\frac{n}{d^h} \cdot d </tex> <tex dpi = "150"> \cdot h </tex> <tex dpi = "160"> = n \cdot d \cdot {\sum_{h = 1}^H \limits}\frac{h}{d^h}. </tex> Докажем вспомогательную лемму о сумме ряда. {{Лемма|statement= <tex dpi = "160"> {\sum_{h = 1}^\infty \limits}\frac{h}{d^h} = \frac{d}{(d - 1)^2} . </tex> |proof= Обозначим за <tex>s</tex> сумму ряда. Заметим, что<tex dpi = "160"> \frac{n}{d^n} = \frac{1}{d} \cdot \frac{n - 1}{d ^{n - 1}} + \frac{1}{d^n}. </tex> <tex dpi = "160">{\sum_{n = 1}^\infty \limits}\frac{1}{d^n}</tex> {{---}} это сумма бесконечной убывающей геометрической прогрессии, и она равна <tex dpi = "160"> \frac{\frac{1}{d}}{1 - \frac{1}{d}} = \frac{1}{d - 1}. </tex>  Получаем <tex>s</tex> <tex dpi = "160" >=\frac{1}{d}</tex> <tex>\cdot s +</tex> <tex dpi = "160" > \frac{1}{d - 1}. </tex> Откуда <tex>s</tex> <tex dpi = "160"> =\frac{d}{(d - 1)^2}. </tex>}} Подставляя в нашу формулу результат леммы, получаем <tex >n</tex> <tex dpi ="160">\cdot (\frac {d}{d - 1})^2 </tex> <tex> \leqslant 4 \cdot n </tex> <tex>=O(n).</tex>}}
Выполняет добавление элемента в кучу за время Псевдокод алгоритма:<texcode style="display:inline-block">O '''function''' buldHeap(\log{N}): '''for''' i = a.heapSize / 2 '''downto''' 0 siftDown(i)</texcode>.Добавление произвольного элемента в конец кучи, и восстановление свойства упорядоченности с помощью
===Слияние двух куч===Даны две кучи <tex>a</tex> и <tex>b</tex>, размерами <tex>n</tex> и <tex>m</tex>, требуется объединить эти две кучи. ====Наивная реализация====Поочередно добавим все элементы из <tex>b</tex> в <tex>a</tex>. Время работы {{---}} <tex>O(m \log(n+m))</tex>.<codestyle="display:inline-block">Insert '''function''' merge(keya, b : '''Heap'''): A '''while''' b.heap_size = A.heap_size + 1heapSize > 0 A[A a.heap_size] = key Sift_Upinsert(Ab.heap_sizeextractMin())
</code>
== Источники ==Реализация с помощью построения кучи====Добавим все элементы кучи <tex>b</tex> в конец массива <tex>a</tex>, после чего вызовем функцию построения кучи. Процедура выполняется за время <tex>O(n + m)</tex>.  <code style="display:inline-block"> '''function''' merge(a, b : '''Heap'''): '''for''' i = 0 '''to''' b.heapSize - 1 a.heapSize = a.heapSize + 1* a[a.heapSize - 1] = b[http:i] a.heapify()</code>  ===Поиск k-ого элемента (очень коряво расписано с неверными индексами)===Требуется найти <tex>k</tex>-ый по величине элемент в куче. # Создаем новую кучу, в которой будем хранить пару <tex>\langle \mathtt{value}, \mathtt{index} \rangle</tex>, где <tex>\mathtt{value}</tex> {{---}} значение элемента, а <tex>\mathtt{index}</rutex> {{---}} индекс элемента в основном массиве, и добавляем в нее корень кучи. # Возьмем корень новой кучи и добавим её детей из основной кучи, после чего удалим корень. Проделаем этот шаг <tex>k - 1</tex> раз.# В корне новой кучи будет находиться ответ.wikipedia Время работы алгоритма {{---}} <tex>O(k \log k)</tex>.org При <tex>n \lessapprox k \log k </wikitex> выгоднее запускать [[поиск k-ой порядковой статистики]].[[Файл:Min_heap_kth.png‎|thumb|center|650px|Пример при <tex>k = 5</Mintex>, красные {{-heap --}} уже удаленные из кучи элементы, зеленые находятся в куче, а голубые {{---}} еще не рассмотрены.]] == См. также ==* [[Биномиальная куча]]* [[Фибоначчиева куча]]* [[Левосторонняя куча]] == Источники информации ==* [[wikipedia:ru:Двоичная куча|Википедия {{---}} Двоичная куча]]* [[wikipedia:ru:Очередь с приоритетом|Википедия {{---}} Очередь с приоритетом]]* [[wikipedia:en:Binary heap|Wikipedia {{---}} Binary heap]]* [[wikipedia:en:Priority queue|Wikipedia {{---}} Priority queue]] [[Категория: Дискретная математика и алгоритмы]][[Категория: Приоритетные очереди]][[Категория: Структуры данных]]
1632
правки

Навигация