Двоичный каскадный сумматор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Схема)
(Схема)
(не показано 16 промежуточных версий этого же участника)
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
|definition='''Двоичный каскадный сумматор''' {{---}} цифровая [[Реализация булевой функции схемой из функциональных элементов|схема]], осуществляющая сложение двух многоразрядных двоичных чисел, с ускоренным формированием разрядов переноса.
+
|definition='''Двоичный каскадный сумматор''' (англ. ''Binary adder'') {{---}} цифровая [[Реализация булевой функции схемой из функциональных элементов|схема]], осуществляющая сложение двух многоразрядных двоичных чисел, с ускоренным формированием разрядов переноса.
 
}}
 
}}
  
Строка 8: Строка 8:
  
 
Рассмотрим один элемент [[Каскадный сумматор|линейного каскадного сумматора - Ripple-carry adder]]. В некоторых случаях бит переноса <tex>C_{i+1}</tex> зависит только от значений <tex>X_{i}</tex> и <tex>Y_{i}</tex>:  
 
Рассмотрим один элемент [[Каскадный сумматор|линейного каскадного сумматора - Ripple-carry adder]]. В некоторых случаях бит переноса <tex>C_{i+1}</tex> зависит только от значений <tex>X_{i}</tex> и <tex>Y_{i}</tex>:  
* если <tex>X_{i} = Y_{i} = 1</tex>, то <tex>C_{i+1} = 1</tex>
+
* если <tex>X_{i} = Y_{i} = 1</tex>, то <tex>C_{i+1} = 1</tex>,
* если <tex>X_{i} = Y_{i} = 0</tex>, то <tex>C_{i+1} = 0</tex>
+
* если <tex>X_{i} = Y_{i} = 0</tex>, то <tex>C_{i+1} = 0</tex>;
 
Иначе (<tex>X_i \neq Y_i</tex>) бит переноса не изменяется, то есть <tex>C_{i + 1} = C_i</tex>.
 
Иначе (<tex>X_i \neq Y_i</tex>) бит переноса не изменяется, то есть <tex>C_{i + 1} = C_i</tex>.
  
 
Три случая называются следующим образом:
 
Три случая называются следующим образом:
* '''G'''enerate {{---}} "порождение" переноса
+
* <tex> \mathbf{g} \mathtt{enerate}</tex> {{---}} ''порождение'' переноса,
* '''K'''ill {{---}} "уничтожение" переноса
+
* <tex> \mathbf{k} \mathtt{ill}</tex> {{---}} ''уничтожение'' переноса,
* '''P'''ropagate {{---}} "проталкивание" переноса
+
* <tex> \mathbf{p} \mathtt{ropagate}</tex> {{---}} ''проталкивание'' переноса.
  
 
Поскольку последовательное применение этих трёх действий над переносами принадлежит также одному из этих типов, то можно определить композицию действий над переносами. Обозначим композицию значком <tex>\otimes</tex> и построим таблицу значений (в столбце первый аргумент, в строке — второй):
 
Поскольку последовательное применение этих трёх действий над переносами принадлежит также одному из этих типов, то можно определить композицию действий над переносами. Обозначим композицию значком <tex>\otimes</tex> и построим таблицу значений (в столбце первый аргумент, в строке — второй):
 
[[Файл:Пример компазиции.png‎|right|450px|thumb|Пример композиции]]
 
[[Файл:Пример компазиции.png‎|right|450px|thumb|Пример композиции]]
{| border="3" cellpadding="10"
+
{| class="wikitable" align="center" style="color: blue; background-color:#ccffcc;" cellpadding="3"
!<tex>\otimes</tex>
+
!colspan="20"|Таблица значений
!k
+
|-align="center"
!p
+
| <tex>\otimes</tex> || <tex> \mathbf{k} </tex> || <tex> \mathbf{p} </tex> || <tex> \mathbf{g} </tex>
!g
+
|-align="center"
|-
+
| <tex> \mathbf{k} </tex> || <tex>k</tex> || <tex>k</tex> || <tex>g</tex>
!k
+
|-align="center"
|k
+
| <tex> \mathbf{p} </tex> || <tex>k</tex> || <tex>p</tex> || <tex>g</tex>
|k
+
|-align="center"
|g
+
| <tex> \mathbf{g} </tex> || <tex>k</tex> || <tex>g</tex> || <tex>g</tex>
|-
+
|-align="center"
!p
+
|}
|k
 
|p
 
|g
 
|-
 
!g
 
|k
 
|g
 
|g
 
|-
 
|}
 
  
 
Поскольку функция ассоциативна, то можно распространить её на любое количество аргументов. Более того, поскольку для любого действия <tex>x</tex> выполняется равенство <tex>x \otimes p = x</tex>, то функцию от нескольких действий можно определить как "последнее не <tex>p</tex>".
 
Поскольку функция ассоциативна, то можно распространить её на любое количество аргументов. Более того, поскольку для любого действия <tex>x</tex> выполняется равенство <tex>x \otimes p = x</tex>, то функцию от нескольких действий можно определить как "последнее не <tex>p</tex>".
Строка 48: Строка 38:
 
Сумматор состоит из двух частей. Первая часть {{---}} это группа полных сумматоров, вычисляющих ответ. Вторая часть {{---}} [[Дерево_отрезков._Построение|дерево отрезков]], с помощью которого вычисляется бит переноса.
 
Сумматор состоит из двух частей. Первая часть {{---}} это группа полных сумматоров, вычисляющих ответ. Вторая часть {{---}} [[Дерево_отрезков._Построение|дерево отрезков]], с помощью которого вычисляется бит переноса.
 
[[Файл:Двоичный_каскадный_сумматор.png|450px|left|thumb|Схема двоичного каскадного сумматора]]
 
[[Файл:Двоичный_каскадный_сумматор.png|450px|left|thumb|Схема двоичного каскадного сумматора]]
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 
''' Обозначения '''
 
''' Обозначения '''
* <tex>+  </tex> {{---}} полный сумматор, вычисляет результат сложения.
+
* <tex>+  </tex> {{---}} полный сумматор, вычисляет результат сложения,
* <tex>\bigotimes</tex> {{---}} блок вычисления композиции двух переносов.
+
* <tex>\bigotimes</tex> {{---}} блок вычисления композиции двух переносов,
 
* <tex>\bigodot</tex> {{---}} блок вычисления <tex>C_{i}</tex>, старшего бита сумматора.
 
* <tex>\bigodot</tex> {{---}} блок вычисления <tex>C_{i}</tex>, старшего бита сумматора.
  
Строка 56: Строка 88:
 
Дерево отрезков вычисляет биты переноса за <tex>O(\log N)</tex>, оставшиеся действия выполняются за <tex>O(1)</tex>. Суммарное время работы {{---}} <tex>O(\log N)</tex>.
 
Дерево отрезков вычисляет биты переноса за <tex>O(\log N)</tex>, оставшиеся действия выполняются за <tex>O(1)</tex>. Суммарное время работы {{---}} <tex>O(\log N)</tex>.
  
 +
== См. также ==
 +
*[[Каскадный сумматор]]
 +
*[[Сумматор]]
 +
*[[Троичный сумматор]]
 +
 +
[[Категория:Дискретная математика и алгоритмы]]
 +
[[Категория:Схемы из функциональных элементов]]
  
 
== Источники информации ==
 
== Источники информации ==
Строка 63: Строка 102:
  
 
* [http://bookfi.net/book/637011 М.И. Богданович "Цифровые интегральные микросхемы" 1996г.]
 
* [http://bookfi.net/book/637011 М.И. Богданович "Цифровые интегральные микросхемы" 1996г.]
 
 
== См. также ==
 
*[http://neerc.ifmo.ru/wiki/index.php?title=%D0%9A%D0%B0%D1%81%D0%BA%D0%B0%D0%B4%D0%BD%D1%8B%D0%B9_%D1%81%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80 Каскадный сумматор]
 
 
[[Категория:Дискретная математика и алгоритмы]]
 
[[Категория:Схемы из функциональных элементов]]
 

Версия 22:17, 19 января 2016

Определение:
Двоичный каскадный сумматор (англ. Binary adder) — цифровая схема, осуществляющая сложение двух многоразрядных двоичных чисел, с ускоренным формированием разрядов переноса.


Принцип работы

Используемые обозначения: [math]X_{i}, Y_{i}[/math][math]i[/math]-ый разряд суммируемых чисел, [math]C_{i}, C_{i+1}[/math] — биты переноса, [math]F_{i}[/math] — результат сложения.

Рассмотрим один элемент линейного каскадного сумматора - Ripple-carry adder. В некоторых случаях бит переноса [math]C_{i+1}[/math] зависит только от значений [math]X_{i}[/math] и [math]Y_{i}[/math]:

  • если [math]X_{i} = Y_{i} = 1[/math], то [math]C_{i+1} = 1[/math],
  • если [math]X_{i} = Y_{i} = 0[/math], то [math]C_{i+1} = 0[/math];

Иначе ([math]X_i \neq Y_i[/math]) бит переноса не изменяется, то есть [math]C_{i + 1} = C_i[/math].

Три случая называются следующим образом:

  • [math] \mathbf{g} \mathtt{enerate}[/math]порождение переноса,
  • [math] \mathbf{k} \mathtt{ill}[/math]уничтожение переноса,
  • [math] \mathbf{p} \mathtt{ropagate}[/math]проталкивание переноса.

Поскольку последовательное применение этих трёх действий над переносами принадлежит также одному из этих типов, то можно определить композицию действий над переносами. Обозначим композицию значком [math]\otimes[/math] и построим таблицу значений (в столбце первый аргумент, в строке — второй):

Пример композиции
Таблица значений
[math]\otimes[/math] [math] \mathbf{k} [/math] [math] \mathbf{p} [/math] [math] \mathbf{g} [/math]
[math] \mathbf{k} [/math] [math]k[/math] [math]k[/math] [math]g[/math]
[math] \mathbf{p} [/math] [math]k[/math] [math]p[/math] [math]g[/math]
[math] \mathbf{g} [/math] [math]k[/math] [math]g[/math] [math]g[/math]

Поскольку функция ассоциативна, то можно распространить её на любое количество аргументов. Более того, поскольку для любого действия [math]x[/math] выполняется равенство [math]x \otimes p = x[/math], то функцию от нескольких действий можно определить как "последнее не [math]p[/math]".

Схема

Сумматор состоит из двух частей. Первая часть — это группа полных сумматоров, вычисляющих ответ. Вторая часть — дерево отрезков, с помощью которого вычисляется бит переноса.

Схема двоичного каскадного сумматора






















Обозначения

  • [math]+ [/math] — полный сумматор, вычисляет результат сложения,
  • [math]\bigotimes[/math] — блок вычисления композиции двух переносов,
  • [math]\bigodot[/math] — блок вычисления [math]C_{i}[/math], старшего бита сумматора.

Схемная сложность

Дерево отрезков вычисляет биты переноса за [math]O(\log N)[/math], оставшиеся действия выполняются за [math]O(1)[/math]. Суммарное время работы — [math]O(\log N)[/math].

См. также

Источники информации