Изменения

Перейти к: навигация, поиск

Двудольные графы и раскраска в 2 цвета

1074 байта добавлено, 09:08, 14 января 2012
Теорема Кенига
''Необходимость.''
Пусть ненулевой граф <tex> G </tex> связен и не имеет циклов нечетной длины. Выберем произвольно вершину <tex> u </tex> и разобьем множество всех вершин на на два непересекающихся множества <tex> V_0 U </tex> и <tex> V_1 V </tex> так, чтобы в <tex> V_0 U </tex> лежали вершины <tex> v_0 </tex>, такие что кратчайшая цепь <tex>(u, v_0)</tex> была чётной длины, а в <tex> V_1 V </tex> соответственно вершины <tex>v_1</tex>, для которых длина цепи <tex>(u, v_1)</tex> - нечётная. При этом <tex> u \in V_0 U </tex>
В графе <tex> G </tex>нет ребер <tex>ab</tex>, таких что <tex>a, b </tex> лежат одновременно в <tex> U </tex> и <tex>V</tex>. Поведем доказательство от противного. Пусть <tex>a, b \in V_0 </tex>. Зададим <tex> P_0 </tex> - кратчайшая <tex> (u, a) </tex> цепь, а <tex> P_1 </tex>- кратчайшая <tex> (u, b) </tex> цепь. Обе цепи четной длины. Пусть <tex> u </tex> - последняя вершина цепи <tex> P_0 </tex>, принадлежащая <tex> P_1 </tex>. Тогда подцепи от <tex> u </tex> до <tex> v_0 </tex> в <tex> P_0 и P_1</tex> имеют одинаковую длину (иначе бы противоречили выбору <tex> P_0 </tex> и <tex> P_1 </tex>). А так как подцепи одинаковы, то чётность у них одинакова, а значит в сумме с ребром <tex> ab </tex> они образуют цикл нечётной длины, что невозможно.
}}
Анонимный участник

Навигация