Изменения

Перейти к: навигация, поиск
м
Исправлена ошибка в окончании слова
Рассмотрим длинную входную строку <tex>w_1</tex> и разобьем на две подстроки <tex>w_1=xz</tex>. Будем считать, что <tex>w_1 = a_1 a_2 a_3 \dots a_n</tex>. Пусть <tex>a_0 = L</tex> и <tex>a_{n+1}=R</tex>. Так как у нас наш автомат может производить чтение в любом направлении, то граница <tex>x</tex> и <tex>z</tex> может быть пересечена несколько раз. Каждый раз, когда автомат пересекает границу справа налево (то есть из <tex>z</tex> в <tex>x</tex>), он выходит из <tex>z</tex> в состояние <tex>q</tex>. Когда пересечение происходит снова слева направо (если оно вообще происходит), то автомат выходит из <tex>x</tex> в состояние <tex>p</tex>. Теперь, если 2ДКА перейдет в <tex>x</tex> в состояние <tex>q</tex> заново, то он снова может появиться в состоянии <tex>p</tex>. Более того, состояние <tex>p</tex> зависит исключительно от <tex>q</tex> и <tex>x</tex>. Обозначим такое отношение через <tex>T_x(q) = p</tex>. Мы может записать все такие отношения в виде конечной таблицы <tex>T_x : Q \cup \{d\} \to Q \cup \{h\}</tex>, где <tex>Q</tex> {{---}} множество состояний 2ДКА, а <tex>d</tex> и <tex>h</tex> будут описаны ниже.
На входной строке <tex>xz</tex> 2ДКА начнет чтение с левого маркера конца строки. В процессе работы автомата позиция чтения будет меняться. В конце концов это позиция пересечет слева направо границу между <tex>x</tex> и <tex>z</tex>. В первый раз это произойдет в каком-нибудь состоянии, которое будем называть <tex>T_x(d)</tex> (для этого мы и выделили <tex>d</tex>). Так же автомат может никогда не выйти из <tex>x</tex>. В таком случае мы запишем <tex>T_x(d) = h</tex>. Состояние <tex>T_x(d)</tex> дает немного информации о <tex>x</tex>, но только конечное количество, поскольку существует только конечное количество вариантов для <tex>T_x(d)</tex>. Отметим, что <tex>T_x(d)</tex> зависит только от <tex>x</tex> и не зависит от <tex>z</tex>. Если на вход подавалась бы строка <tex>xw</tex> вместо <tex>xz</tex>, то в таком случае при пересечении границы из <tex>x</tex> в <tex>w</tex> автомат также был бы в состоянии <tex>T_x(d)</tex>, потому что его значение до того момента определялось только <tex>x</tex> и до тех пор все, что находится справа от границы никак не влияет.
Если <tex>T_x(d) = h</tex>, то 2ДКА в бесконечном цикле внутри <tex>x</tex>, и он никогда не допустит и не отвергнет входную строку.
Предположим, что 2ДКА переходит из <tex>x</tex> в <tex>z</tex> и спустя время перейти переходит обратно в состояние <tex>q</tex>. Если это происходит, то потом:
* либо снова произойдет переход из <tex>x</tex> в некоторое состояние <tex>p</tex>. В таком случае мы определим <tex>T_x(q)=p</tex>.
* либо никогда не перейдет. В таком случае <tex>T_x(q) = h</tex>.
Заметим, что у нас конечное число возможных таблиц
<tex>T_x : Q \cup \{d\} \to Q \cup \{h\}</tex>,
а именно <tex>(k+1)^{k+1}</tex>, где <tex>k</tex> {{---}} размер множество множества <tex>Q</tex>. Таким образом, у нас конечное количество информации о <tex>x</tex>, которое мы может перенести через границу справа от <tex>x</tex>, и которое закодировано у нас в таблицe <tex>T_x</tex>.
Отметим также, что если <tex>T_x=T_y</tex> и автомат допускает строку <tex>xz</tex>, то тогда он допускает и строку <tex>yz</tex>, потому что последовательность состояний , перенесенных через границу <tex>x</tex> и <tex>z</tex> (либо <tex>y</tex> и <tex>z</tex>) в любом направлении , полностью определяется таблицами <tex>T_x=T_y</tex> и строкой <tex>z</tex>. Чтобы допустить строку <tex>xz</tex>, автомат должен в какой-то момент прочитать правый маркер конца строки, находясь в допускающем состоянии <tex>t</tex>.
Теперь мы может использовать теорему Майхилла-Нероуда, чтобы показать, что язык <tex>L(M)</tex> нашего автомата <tex>M</tex> [[Регулярные_языки:_два_определения_и_их_эквивалентность|регулярный]].
Рассмотрим следующий язык <tex>L_n = (a+b)^∗a(a+b)^{n-1}a(a+b)^∗</tex> при <tex>\forall n > 0</tex>.
Он может быть легко распознан с помощью следующего [[Недетерминированные_конечные_автоматы|недетерменированного недетерминированного конечного автомата]].
[[Файл:2dfa_example_1.png|600px]]
== См. также ==
* [[Детерминированные конечные автоматы]]
* [[Локальные автоматы]]
* [[Теорема Клини (совпадение классов автоматных и регулярных языков)]]
[[Категория: Теория формальных языков]]
[[Категория: Автоматы и регулярные языки]]
[[Категория: Другие автоматы]]
1
правка

Навигация