Изменения

Перейти к: навигация, поиск

Декартово дерево

1 байт добавлено, 20:09, 16 января 2019
м
Нет описания правки
С помощью этой операции можно слить два декартовых дерева в одно.
ПричемПричём, все ключи в первом(''левом'') дереве должны быть меньше, чем
ключи во втором(''правом''). В результате получается дерево, в котором есть все ключи из первого и второго деревьев: <tex>\mathrm{merge}(T_1, T_2) \to \{T\}</tex>
=== insert ===
Операция <tex>\mathrm{insert}(T, k)</tex> добавляет в дерево <tex>T</tex> элемент <tex>k</tex>, где <tex>k.x</tex> {{---}} ключ, а <tex>k.y</tex>{{---}} приоритет.
Представим что элемент <tex>k</tex>, это декартово дерево из одного элемента, и для того чтобы его добавить в наше декартово дерево <tex>T</tex>, очевидно, нам нужно их слить. Но <tex>T</tex> может содержать ключи как меньше, так и больше ключа <tex>k.x</tex>, поэтому сначала нужно разрезать <tex>T</tex> по ключу <tex>k.x</tex>.
# Разобьём наше дерево по ключу, который мы хотим удалить, то есть <tex>\mathrm{split }(T, k.x) \to \langle T_1, T_2\rangle</tex>.
# Теперь отделяем от первого дерева элемент <tex>x</tex>, то есть самого левого ребенка ребёнка дерева <tex> T_2 </tex>.
# Сливаем первое дерево со вторым, то есть <tex>\mathrm{merge }(T_1, T_2) \to T</tex>.
== Построение декартова дерева ==
Пусть нам известно из каких пар <tex>(x_i, y_i)</tex> требуется построить декартово дерево, причем причём также известно, что <tex>x_1 < x_2 < \ldots < x_n</tex>.
=== Алгоритм за <tex>O(n\log n)</tex> ===
Отсортируем все приоритеты по убыванию за <tex> O(n\log n) </tex> и выберем первый из них, пусть это будет <tex>y_k</tex>. Сделаем <tex>(x_k, y_k)</tex> корнем дерева. Проделав то же самое с остальными вершинами получим левого и правого сына <tex>(x_k, y_k)</tex>. В среднем высота Декартова дерева <tex>\log n</tex> (см. далее) и на каждом уровне мы сделали <tex>O(n)</tex> операций. Значит такой алгоритм работает за <tex>O(n\log n)</tex>.
=== Другой алгоритм за <tex>O(n\log n)</tex> ===
Отсортируем парочки <tex>(x_i, y_i)</tex> по убыванию <tex>x_i</tex> и положим их в очередь. Сперва достанем из очереди первые <tex>2</tex> элемента и сольем сольём их в дерево и положим в конец очереди, затем сделаем то же самое со следующими двумя и т.д. Таким образом, мы сольем сольём сначала <tex>n</tex> деревьев размера <tex>1</tex>, затем <tex>\dfrac{n}{2}</tex> деревьев размера <tex>2</tex> и так далее. При этом на уменьшение размера очереди в два раза мы будем тратить суммарно <tex>O(n)</tex> время на слияния, а всего таких уменьшений будет <tex>\log n</tex>. Значит полное время работы алгоритма будет <tex>O(n\log n)</tex>.
=== Алгоритм за <tex>O(n)</tex> ===
Заметим, что каждую вершину мы посетим максимум дважды: при непосредственном добавлении и, поднимаясь вверх (ведь после этого вершина будет лежать в чьемчьём-то левом поддереве, а мы поднимаемся только по правому). Из этого следует, что построение происходит за <tex>O(n)</tex>.
== Случайные приоритеты ==
Будем считать, что все выбранные приоритеты <tex>y</tex> попарно различны.
Для начала введем введём несколько обозначений:
* <tex>x_k</tex> {{---}} вершина с <tex>k</tex>-ым по величине ключом;
* индикаторная величина <tex>A_{i, j} = \left\{\begin{array}{lllc} 1 ,&& x_i\ \text{is ancestor of} \ x_j\\
Для подсчёта средней глубины вершин нам нужно сосчитать вероятность того, что вершина <tex>x_i</tex> является предком вершины <tex>x_k</tex>, то есть <tex>Pr[A_{i,k} = 1]</tex>.
Введем Введём новое обозначение:
* <tex>X_{i, k}</tex> {{---}} множество ключей <tex>\{x_i, \ldots, x_k\}</tex> или <tex>\{x_k, \ldots, x_i\}</tex>, в зависимости от <tex>i < k</tex> или <tex>i > k</tex>. <tex>X_{i, k}</tex> и <tex>X_{k, i}</tex> обозначают одно и тоже, их мощность равна <tex>|k - i| + 1</tex>.

Навигация