Редактирование: Дерево ван Эмде Боаса

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
'''Дерево ван Эмде Боаса''' (англ. ''Van Emde Boas tree, vEB tree'') {{---}} структура данных, представляющая собой [[Дерево поиска, наивная реализация|дерево поиска]], позволяющее хранить целые неотрицательные числа в интервале <tex>[0;2^k)</tex> и осуществлять над ними все соответствующие дереву поиска операции.
+
'''Дерево ван Эмде Боаса''' {{---}} структура данных, представляющая собой [[Дерево поиска, наивная реализация|дерево поиска]], позволяющее хранить целые неотрицательные числа в интервале <tex>[0;2^k)</tex> и осуществлять над ними все соответствующие дереву поиска операции.
  
Проще говоря, данная структура позволяет хранить <tex>k</tex>-битные числа и производить над ними операции <tex>\mathrm{find}</tex>, <tex>\mathrm{insert}</tex>, <tex>\mathrm{remove}</tex>, <tex>\mathrm{next}</tex>, <tex>\mathrm{prev}</tex>, <tex>\mathrm{\min}</tex>, <tex>\mathrm{max}</tex> и некоторые другие операции, которые присущи всем деревьям поиска.
+
Проще говоря, данная структура позволяет хранить <tex>k</tex>-битные числа и производить над ними операции <tex>find</tex>, <tex>insert</tex>, <tex>remove</tex>, <tex>next</tex>, <tex>prev</tex>, <tex>min</tex>, <tex>max</tex> и некоторые другие операции, которые присущи всем деревьям поиска.
  
 
Особенностью этой структуры является то, что все операции выполняются за <tex>O(\log k)</tex>, что асимптотически лучше, чем <tex>O(\log n)</tex> в большинстве других деревьев поиска, где <tex>n</tex> {{---}} количество элементов в дереве.
 
Особенностью этой структуры является то, что все операции выполняются за <tex>O(\log k)</tex>, что асимптотически лучше, чем <tex>O(\log n)</tex> в большинстве других деревьев поиска, где <tex>n</tex> {{---}} количество элементов в дереве.
  
 
== Структура ==
 
== Структура ==
[[Файл:Дерево_ван_Эмде_Боаса.png|right|680px|thumb|4-дерево, содержащее в себе 0, 1, 2, 3, 5, 14 и 15. Красным цветом выделены непустые поддеревья]]
+
[[Файл:Дерево_ван_Эмде_Боаса.png|right|570px|thumb|4-дерево, содержащее в себе 0, 1, 2, 3, 5, 14 и 15. Красным цветом выделены непустые поддеревья]]
  
 
Для удобства работы с деревом будем использовать <tex> k </tex>, равные степени двойки.
 
Для удобства работы с деревом будем использовать <tex> k </tex>, равные степени двойки.
  
Как уже было сказано выше, <tex>k</tex>-дерево хранит числа в интервале <tex>[0;2^k)</tex>. Тогда при <tex>k = 1</tex> дерево хранит информацию, содержатся ли в нем <tex>0</tex> и <tex>1</tex>.
+
Как уже было сказано выше, <tex>k</tex>-дерево хранит числа в интервале <tex>[0;2^k)</tex>. Тогда 1-дерево хранит информацию, содержатся ли в нем 0 и 1.
  
Построим <tex>k</tex>-дерево, при <tex>k \neq 1</tex>. В нем будут храниться:
+
Построим <tex>k</tex>-дерево, при <tex>k \neq 1</tex>. В нем будут хранится:
 
*массив <tex>children</tex>, состоящий из <tex>2^{k/2}</tex>  <tex>k/2</tex>-деревьев
 
*массив <tex>children</tex>, состоящий из <tex>2^{k/2}</tex>  <tex>k/2</tex>-деревьев
 
*вспомогательное <tex>k/2</tex>-дерево, которое назовем <tex>aux</tex>
 
*вспомогательное <tex>k/2</tex>-дерево, которое назовем <tex>aux</tex>
 
*максимальный и минимальный элементы, хранящиеся в этом дереве (если оно не является пустым), причем дополнительно в массиве <tex> chilren </tex> эти элементы хранить не будем.
 
*максимальный и минимальный элементы, хранящиеся в этом дереве (если оно не является пустым), причем дополнительно в массиве <tex> chilren </tex> эти элементы хранить не будем.
  
Пусть у нас есть <tex>k</tex>-битное число <tex>x</tex>. Разобьем это число таким образом, что <tex>\mathrm{high(x)}</tex> {{---}} число, соответствующее <tex>k/2</tex> старшим битам числа <tex>x</tex>, а <tex>\mathrm{low(x)}</tex> соответствует <tex>k/2</tex> младшим битам. Тогда информация, хранится ли в данном дереве число <tex>x</tex>, эквивалентна информации, содержится ли в дереве <tex>children[\mathrm{high(x)}]</tex> число <tex>\mathrm{low(x)}</tex>.
+
Пусть у нас есть <tex>k</tex>-битное число <tex>x</tex>. Разобьем это число таким образом, что <tex>high(x)</tex> {{---}} число, соответствующее <tex>k/2</tex> старшим битам числа <tex>x</tex>, а <tex>low(x)</tex> соответствует <tex>k/2</tex> младшим битам. Тогда информация, хранится ли в данном дереве число <tex>x</tex>, эквивалентна информации, содержится ли в дереве <tex>children[high(x)]</tex> число <tex>low(x)</tex>.
  
 
Нетрудно увидеть, что высота подобного дерева <tex>\log_{2} k</tex>, так как каждый следующий уровень дерева содержит числа, количество битов в которых в 2 раза меньше, чем в предыдущем.
 
Нетрудно увидеть, что высота подобного дерева <tex>\log_{2} k</tex>, так как каждый следующий уровень дерева содержит числа, количество битов в которых в 2 раза меньше, чем в предыдущем.
Строка 25: Строка 25:
 
== Операции ==
 
== Операции ==
 
=== empty ===
 
=== empty ===
Чтобы определить, пусто ли дерево, будем изначально инициализировать поле <tex>\min</tex> числом, которое не лежит в интервале <tex>[0;2^k)</tex>. Назовем это число <tex>none</tex>. Например, это может быть <tex>-1</tex>, если мы храним в числа в знаковом целочисленном типе, или <tex>2^k</tex>, если в беззнаковом. Тогда проверка на пустоту дерева будет заключаться лишь в сравнении поля <tex>\min</tex> с этим числом.
+
Чтобы определить, пусто ли дерево, будем изначально инициализировать поле <tex>min</tex> числом, которое не лежит в интервале <tex>[0;2^k)</tex>. Назовем это число <tex>none</tex>. Например, это может быть <tex>-1</tex>, если мы храним в числа в знаковом целочисленном типе, или <tex>2^k</tex>, если в беззнаковом. Тогда проверка на пустоту дерева будет заключаться лишь в сравнении поля <tex>min</tex> с этим числом.
<code>
+
<pre>
'''boolean''' empty(t: '''Tree'''):
+
empty(T)
   '''if''' t.min == ''none''
+
   if T.min == none
     '''return''' ''true''
+
     return true;
   '''else'''
+
   else
  '''return''' ''false''
+
    return false;
</code>
+
</pre>
  
 
=== min и max ===
 
=== min и max ===
Так как мы храним в дереве минимальное и максимальное значения, то данные операции не требуют ничего, кроме вывода значения поля <tex>\min</tex> или <tex>\max</tex> в соответствии с запросом. Время выполнения данных операций соответственно <tex>O(1)</tex>.
+
Так как мы храним в дереве минимальное и максимальное значения, то данные операции не требуют ничего, кроме вывода значения поля <tex>min</tex> или <tex>max</tex> в соответствии с запросом. Время выполнения данных операций соответственно <tex>O(1)</tex>.
  
 
=== find ===
 
=== find ===
 
Алгоритм поиска сам напрашивается из выше описанной структуры:
 
Алгоритм поиска сам напрашивается из выше описанной структуры:
 
*если дерево пусто, то число не содержится в нашей структуре.
 
*если дерево пусто, то число не содержится в нашей структуре.
*если число равно полю <tex>\min</tex> или <tex>\max</tex>, то число в дереве есть.
+
*если число равно полю <tex>min</tex> или <tex>max</tex>, то число в дереве есть.
*иначе ищем число <tex>\mathrm{low(x)}</tex> в поддереве <tex>children[\mathrm{high(x)}]</tex>.
+
*иначе ищем число <tex>low(x)</tex> в поддереве <tex>children[high(x)]</tex>.
  
<code>
+
<pre>
'''boolean''' find(t: '''Tree''', x: '''int'''):
+
find(T, x)
   '''if''' empty(t)
+
   if empty(T)
     '''return''' ''false''
+
     return false;
   '''if''' t.min == x '''or''' t.max == x
+
   if T.min == x or T.max == x
     '''return''' ''true''
+
     return true;
   '''return''' find(t.children[high(x)], low(x))
+
   return find(T.children[high(x)], low(x));
</code>
+
</pre>
  
Заметим, что выполняя операцию <tex>\mathrm{find}</tex>, мы либо спускаемся по дереву на один уровень ниже, либо, если нашли нужный нам элемент, выходим из нее. В худшем случае мы спустимся от корня до какого-нибудь 1-дерева, то есть выполним операцию <tex>\mathrm{find}</tex> столько раз, какова высота нашего дерева. На каждом уровне мы совершаем <tex>O(1)</tex> операций. Следовательно время работы <tex>O(\log k)</tex>.
+
Заметим, что выполняя операцию <tex>find</tex>, мы либо спускаемся по дереву на один уровень ниже, либо, если нашли нужный нам элемент, выходим из нее. В худшем случае мы спустимся от корня до какого-нибудь 1-дерева, то есть выполним операцию <tex>find</tex> столько раз, какова высота нашего дерева. На каждом уровне мы совершаем <tex>O(1)</tex> операций. Следовательно время работы <tex>O(\log k)</tex>.
  
 
=== insert ===
 
=== insert ===
 
Операция вставки элемента <tex>x</tex> состоит из нескольких частей:
 
Операция вставки элемента <tex>x</tex> состоит из нескольких частей:
  
*если дерево пусто или в нем содержится единственный элемент (<tex> \min = \max </tex>), то присвоим полям <tex>\min</tex> и <tex>\max</tex> соответствующие значения. Делать что-то еще бессмысленно, так как информация записанная в <tex>\min</tex> и <tex>\max</tex> полностью описывает состояние текущего дерева и удовлетворяет структуре нашего дерева.
+
*если дерево пусто или в нем содержится единственный элемент (<tex> min = max </tex>), то присвоим полям <tex>min</tex> и <tex>max</tex> соответствующие значения. Делать что-то еще бессмысленно, так как информация записанная в <tex>min</tex> и <tex>max</tex> полностью описывает состояние текущего дерева и удовлетворяет структуре нашего дерева.
 
*иначе:
 
*иначе:
**если элемент <tex>x</tex> больше <tex>\max</tex> или меньше <tex>\min</tex> текущего дерева, то обновим соответствующее значение минимума или максимума, а старый минимум или максимум добавим в дерево.
+
**если элемент <tex>x</tex> больше <tex>max</tex> или меньше <tex>min</tex> текущего дерева, то обновим соответствующее значение минимума или максимума, а старый минимум или максимум добавим в дерево.
**вставим во вспомогательное дерево <tex>aux</tex> число <tex>\mathrm{high(x)}</tex>, если соответствующее поддерево <tex>children[\mathrm{high(x)}]</tex> до этого было пусто.
+
**вставим во вспомогательное дерево <tex>aux</tex> число <tex>high(x)</tex>, если соответствующее поддерево <tex>children[high(x)]</tex> до этого было пусто.
**вставим число <tex>\mathrm{low(x)}</tex> в поддерево <tex>children[\mathrm{high(x)}]</tex>, за исключением ситуации, когда текущее дерево {{---}} это 1-дерево, и дальнейшая вставка не требуется.
+
**вставим число <tex>low(x)</tex> в поддерево <tex>children[high(x)]</tex>, за исключением ситуации, когда текущее дерево {{---}} это 1-дерево, и дальнейшая вставка не требуется.
  
<code>
+
<pre>
'''function''' insert(t: '''Tree''', x: '''int'''):
+
insert(T, x)
   '''if''' empty(t)                                     <span style="color:#008000">// проверка на пустоту текущего дерева</span>
+
   if empty(T)                                 // проверка на пустоту текущего дерева
     t.min = x
+
     T.min = x;
     t.max = x
+
     T.max = x;
   '''else'''
+
   else
     '''if''' t.min == t.max                             <span style="color:#008000">// проверка, что в дереве один элемент</span>
+
     if T.min == T.max                         // проверка, что в дереве один элемент
       '''if''' T.min < x
+
       if T.min < x
         t.max = x
+
         T.max = x;
       '''else'''
+
       else
         t.min = x
+
         T.min = x;
  '''else'''
+
    else
       '''if''' t.min > x
+
       if T.min > x
         swap(t.min, x)                           <span style="color:#008000">// релаксация минимума</span>
+
         swap(T.min, x);                      // релаксация минимума
       '''if''' t.max < x
+
       if T.max < x
         swap(t.max, x)                           <span style="color:#008000">// релаксация максимума</span>
+
         swap(T.max, x);                      // релаксация максимума
       '''if''' t.k != 1
+
       if T.k != 1
         '''if''' empty(t.children[high(x)])
+
         if empty(T.children[high(x)])
           insert(t.aux, high(x))                 <span style="color:#008000">// вставка high(x) во вспомогательно дерево aux</span>
+
           insert(T.aux, high(x));            // вставка high(x) во вспомогательно дерево aux
         insert(t.children[high(x)], low(x))     <span style="color:#008000">// вставка low(x) в поддерево children[high(x)]</span>
+
         insert(T.children[high(x)], low(x))// вставка low(x) в поддерево children[high(x)]
</code>
+
</pre>
  
Нетрудно увидеть, что данная операция работает за время <tex>O(\log k)</tex>. На каждом уровне дерева мы выполняем <tex>O(1)</tex> операций. После этого возможны 2 случая: поддерево <tex>children[\mathrm{high(x)}]</tex> пусто, и мы будем производить дальнейшую вставку и в него, и во вспомогательное дерево <tex>aux</tex>, или же поддерево не пусто, и мы просто спустимся на уровень ниже. Но если поддерево <tex>children[\mathrm{high(x)}]</tex> пусто, то вставка в него будет выполнена за <tex>O(1)</tex>, так как мы всего лишь обновим поля <tex>\min</tex> и <tex>\max</tex>. Все остальные операции будут выполнятся уже со вспомогательным деревом <tex>aux</tex>, высота которого на 1 уровень меньше, чем высота текущего. Если же поддерево <tex>children[\mathrm{high(x)}]</tex> не пусто, то мы просто перейдем к вставке элемента в это поддерево, высота которого так же на 1 меньше, чем у текущего. В итоге, каждый раз, выполнив <tex>O(1)</tex> операций, мы переходим к дереву, высота которого на 1 меньше, чем у текущего. Следовательно, количество операций пропорционально высоте дерева, которая, как уже было показано, <tex>O(\log k)</tex>. То есть операция вставки займет <tex>O(\log k)</tex> времени.
+
Нетрудно увидеть, что данная операция работает за время <tex>O(\log k)</tex>. На каждом уровне дерева мы выполняем <tex>O(1)</tex> операций. После этого возможны 2 случая: поддерево <tex>children[high(x)]</tex> пусто, и мы будем производить дальнейшую вставку и в него, и во вспомогательное дерево <tex>aux</tex>, или же поддерево не пусто, и мы просто спустимся на уровень ниже. Но если поддерево <tex>children[high(x)]</tex> пусто, то вставка в него будет выполнена за <tex>O(1)</tex>, так как мы всего лишь обновим поля <tex>min</tex> и <tex>max</tex>. Все остальные операции будут выполнятся уже со вспомогательным деревом <tex>aux</tex>, высота которого на 1 уровень меньше, чем высота текущего. Если же поддерево <tex>children[high(x)]</tex> не пусто, то мы просто перейдем к вставке элемента в это поддерево, высота которого так же на 1 меньше, чем у текущего. В итоге, каждый раз, выполнив <tex>O(1)</tex> операций, мы переходим к дереву, высота которого на 1 меньше, чем у текущего. Следовательно, количество операций пропорционально высоте дерева, которая, как уже было показано, <tex>O(\log k)</tex>. То есть операция вставки займет <tex>O(\log k)</tex> времени.
  
 
=== remove ===
 
=== remove ===
 
Удаление из дерева также делится на несколько подзадач:
 
Удаление из дерева также делится на несколько подзадач:
*если <tex> \min =  \max = x </tex>, значит в дереве один элемент, удалим его и отметим, что дерево пусто.
+
*если <tex> min =  max = x </tex>, значит в дереве один элемент, удалим его и отметим, что дерево пусто.
*если <tex> x = \min </tex>, то мы должны найти следующий минимальный элемент в этом дереве, присвоить <tex>\min</tex> значение второго минимального элемента и удалить его из того места, где он хранится. Второй минимум {{---}} это либо <tex> \max </tex>, либо <tex> children[aux.min].min </tex> (для случая <tex> x = \max </tex> действуем аналогично).
+
*если <tex> x = min </tex>, то мы должны найти следующий минимальный элемент в этом дереве, присвоить <tex>min</tex> значение второго минимального элемента и удалить его из того места, где он хранится. Второй минимум {{---}} это либо <tex> max </tex>, либо <tex> children[aux.min].min </tex> (для случая <tex> x = max </tex> действуем аналогично).
*если же <tex> x \neq \min </tex> и <tex> x \neq \max </tex>, то мы должны удалить <tex>\mathrm{low(x)}</tex> из поддерева <tex>children[\mathrm{high(x)}]</tex>.
+
*если же <tex> x \neq min </tex> и <tex> x \neq max </tex>, то мы должны удалить <tex>low(x)</tex> из поддерева <tex>children[high(x)]</tex>.
Так как в поддеревьях хранятся не все биты исходных элементов, а только часть их, то для восстановления исходного числа, по имеющимся старшим и младшим битам, будем использовать функцию <tex> merge </tex>. Также нельзя забывать, что если мы удаляем последнее вхождение <tex>x</tex>, то мы должны удалить <tex>\mathrm{high(x)}</tex> из вспомогательного дерева.
+
Так как в поддеревьях хранятся не все биты исходных элементов, а только часть их, то для восстановления исходного числа, по имеющимся старшим и младшим битам, будем использовать функцию <tex> merge </tex>. Также нельзя забывать, что если мы удаляем последнее вхождение <tex>x</tex>, то мы должны удалить <tex>high(x)</tex> из вспомогательного дерева.
  
<code>
+
<pre>
'''function''' remove(t: '''Tree''', x: '''int'''):
+
remove(T, x)
   '''if''' t.min == x '''and''' t.max == x             <span style="color:#008000">// случай, когда в дереве один элемент</span>
+
   if T.min == x and T.max == x         // случай, когда в дереве один элемент
     t.min = ''none''
+
     T.min = none;
     '''return'''
+
     return;
   '''if''' t.min == x
+
   if T.min == x
     '''if''' empty(t.aux)
+
     if empty(T.aux)
       t.min = t.max
+
       T.min = T.max;
       '''return'''
+
       return;
     x = merge(t.aux.min, t.children[t.aux.min].min)
+
     x = merge(T.aux.min, T.children[T.aux.min].min);
     t.min = x
+
     T.min = x;
   '''if''' t.max == x
+
   if T.max == x
     '''if''' empty(t.aux)
+
     if empty(T.aux)
       t.max = t.min
+
       T.max = T.min;
       '''return'''
+
       return;
  '''else'''
+
    else
       x = merge(t.aux.max, t.children[t.aux.max].max)
+
       x = merge(T.aux.max, T.children[T.aux.max].max);
       t.max = x
+
       T.max = x;
   '''if''' empty(t.aux)                           <span style="color:#008000">// случай, когда элемента x нет в дереве</span>
+
   if empty(T.aux)                       // случай, когда элемента x нет в дереве
     '''return'''
+
     return;
   remove(t.children[high(x)], low(x))
+
   remove(T.children[high(x)], low(x));
   '''if''' empty(t.children[high(x)])             <span style="color:#008000">// если мы удалили из поддерева последний элемент</span>
+
   if empty(T.children[high(x)])         // если мы удалили из поддерева последний элемент
     remove(t.aux, high(x))                 <span style="color:#008000">// то удаляем информацию, что это поддерево не пусто</span>
+
     remove(T.aux, high(x));            // то удаляем информацию, что это поддерево не пусто
</code>
+
</pre>
  
Оценка времени работы операции <tex>\mathrm{remove}</tex> такая же, как и у операции <tex>\mathrm{insert}</tex>. На каждом уровне дерева мы совершаем <tex>O(1)</tex> операций и переходим к удалению элементов максимум в двух деревьях(в одном поддереве и во вспомогательном дереве), чьи высоты на один меньше текущей. Но если мы производим операцию удаления из вспомогательного дерева, значит удаление из поддерева потребовало <tex>O(1)</tex> операций, так как оно содержало всего один элемент. В итоге, количество операций пропорционально высоте дерева, то есть <tex>O(\log k)</tex>.
+
Оценка времени работы операции <tex>remove</tex> такая же, как и у операции <tex>insert</tex>. На каждом уровне дерева мы совершаем <tex>O(1)</tex> операций и переходим к удалению элементов максимум в двух деревьях(в одном поддереве и во вспомогательном дереве), чьи высоты на один меньше текущей. Но если мы производим операцию удаления из вспомогательного дерева, значит удаление из поддерева потребовало <tex>O(1)</tex> операций, так как оно содержало всего один элемент. В итоге, количество операций пропорционально высоте дерева, то есть <tex>O(\log k)</tex>.
  
 
=== next и prev ===
 
=== next и prev ===
 
Алгоритм нахождения следующего элемента, как и два предыдущих, сводится к рассмотрению случая, когда дерево содержит не более одного элемента, либо к поиску в одном из его поддеревьев:
 
Алгоритм нахождения следующего элемента, как и два предыдущих, сводится к рассмотрению случая, когда дерево содержит не более одного элемента, либо к поиску в одном из его поддеревьев:
 
*если дерево пусто, или максимум этого дерева не превосходит <tex> x </tex>, то следующего элемента в этом дереве не существует.
 
*если дерево пусто, или максимум этого дерева не превосходит <tex> x </tex>, то следующего элемента в этом дереве не существует.
*если <tex> x </tex> меньше поля <tex> \min </tex>, то искомый элемент и есть <tex> \min </tex>.
+
*если <tex> x </tex> меньше поля <tex> min </tex>, то искомый элемент и есть <tex> min </tex>.
*если дерево содержит не более двух элементов, и <tex> x < \max </tex>, то искомый элемент <tex> \max </tex>.
+
*если дерево содержит не более двух элементов, и <tex> x < max </tex>, то искомый элемент <tex> max </tex>.
 
*если же в дереве более двух элементов, то:
 
*если же в дереве более двух элементов, то:
**если в дереве есть еще числа, большие <tex> x </tex>, и чьи старшие биты равны <tex>\mathrm{high(x)} </tex>, то продолжим поиск в поддереве <tex> children[\mathrm{high(x)}] </tex>, где будем искать число, следующее после <tex>\mathrm{low(x)} </tex>.
+
**если в дереве есть еще числа, большие <tex> x </tex>, и чьи старшие биты равны <tex> high(x) </tex>, то продолжим поиск в поддереве <tex> children[high(x)] </tex>, где будем искать число, следующее после <tex> low(x) </tex>.
 
**иначе искомым элементом является либо минимум следующего непустого поддерева, если такое есть, либо максимум текущего дерева в противном случае.
 
**иначе искомым элементом является либо минимум следующего непустого поддерева, если такое есть, либо максимум текущего дерева в противном случае.
  
<code>
+
<pre>
'''int''' next(t: '''Tree''', x: '''int''')
+
next(T, x)
   '''if''' empty(t) '''or''' t.max <= x
+
   if empty(T) or T.max <= x
     '''return''' ''none'';                                                          <span style="color:#008000">// следующего элемента нет</span>
+
     return none;                                                          // следующего элемента нет
   '''if''' t.min > x
+
   if T.min > x
     '''return''' t.min;
+
     return T.min;
   '''if''' empty(t.aux)
+
   if empty(T.aux)
     '''return''' t.max;                                                        <span style="color:#008000">// в дереве не более двух элементов</span>
+
     return T.max;                                                        // в дереве не более двух элементов
   '''else'''
+
   else
     '''if''' '''not''' empty(t.children[high(x)]) '''and '''t.childen[high(x)].max > low(x)  
+
     if not empty(T.children[high(x)]) and T.childen[high(x)].max > low(x)  
       '''return''' merge(high(x), next(t.children[high(x)], low(x)));          <span style="color:#008000">// случай, когда следующее число начинается с high(x)</span>
+
       return merge(high(x), next(T.children[high(x)], low(x)));          // случай, когда следующее число начинается с high(x)
     '''else'''                                                                 <span style="color:#008000">// иначе найдем следующее непустое поддерево</span>
+
     else                                                                  // иначе найдем следующее непустое поддерево
       '''int''' nextHigh = next(t.aux, high(x));
+
       nextHigh = next(T.aux, high(x));
       '''if''' nextHigh == ''none''
+
       if nextHigh == null
         '''return''' t.max;                                                    <span style="color:#008000">// если такого нет, вернем максимум</span>
+
         return T.max;                                                    // если такого нет, вернем максимум
    '''else'''
+
      else
         '''return''' merge(nextHigh, t.children[nextHigh].min);               <span style="color:#008000"> // если есть, вернем минимум найденного поддерева</span>
+
         return merge(nextHigh, T.children[nextHigh].min);                 // если есть, вернем минимум найденного поддерева
</code>
+
</pre>
  
Время работы, как и всех предыдущих функций, оценивается так же, и равно <tex>O(\log k)</tex>. Функция <tex>\mathrm{prev} </tex> реализуется аналогично.
+
Время работы, как и всех предыдущих функций, оценивается так же, и равно <tex>O(\log k)</tex>. Функция <tex> prev </tex> реализуется аналогично.
  
 
== Преимущества и недостатки ==
 
== Преимущества и недостатки ==
Строка 155: Строка 155:
 
=== Преимущества ===
 
=== Преимущества ===
 
Главным преимуществом данной структуры является ее быстродействие. Асимптотически время работы операций дерева ван Эмде Боаса лучше, чем, например, у [[АВЛ-дерево|АВЛ]], [[Красно-черное дерево|красно-черных]], [[2-3 дерево|2-3]], [[Splay-дерево|splay]] и [[Декартово дерево|декартовых]] деревьев уже при небольшом количестве элементов. Конечно, из-за довольно непростой реализации возникают немалые постоянные множители, которые снижают практическую эффективность данной структуры. Но все же, при большом количестве элементов, эффективность дерева ван Эмде Боаса проявляется и на практике, что позволяет нам использовать данную структуру не только как эффективное дерево поиска, но и в других задачах. Например:
 
Главным преимуществом данной структуры является ее быстродействие. Асимптотически время работы операций дерева ван Эмде Боаса лучше, чем, например, у [[АВЛ-дерево|АВЛ]], [[Красно-черное дерево|красно-черных]], [[2-3 дерево|2-3]], [[Splay-дерево|splay]] и [[Декартово дерево|декартовых]] деревьев уже при небольшом количестве элементов. Конечно, из-за довольно непростой реализации возникают немалые постоянные множители, которые снижают практическую эффективность данной структуры. Но все же, при большом количестве элементов, эффективность дерева ван Эмде Боаса проявляется и на практике, что позволяет нам использовать данную структуру не только как эффективное дерево поиска, но и в других задачах. Например:
*cортировка последовательности из <tex> n </tex> чисел. Вставим элементы в дерево, найдем минимум и <tex> n - 1</tex> раз вызовем функцию <tex> \mathrm{next} </tex>. Так как все операции занимают не более <tex> O(\log k)</tex> времени, то итоговая асимптотика алгоритма <tex> O(n \cdot \log k)</tex>, что даже лучше, чем [[Цифровая сортировка|цифровая сортировка]], асимптотика которой <tex> O(n \cdot k)</tex>.
+
*cортировка последовательности из <tex> n </tex> чисел. Вставим элементы в дерево, найдем минимум и <tex> n - 1</tex> раз вызовем функцию <tex> next </tex>. Так как все операции занимают не более <tex> O(\log k)</tex> времени, то итоговая асимптотика алгоритма <tex> O(n \cdot \log k)</tex>, что даже лучше, чем [[Цифровая сортировка|цифровая сортировка]], асимптотика которой <tex> O(n \cdot k)</tex>.
 
*[[Алгоритм Дейкстры|алгоритм Дейкстры]]. Данный алгоритм с использованием [[Двоичная куча|двоичной кучи]] для поиска минимума работает за <tex> O(E \cdot \log V)</tex>, где  <tex> V </tex> {{---}} количество вершин в графе, а <tex> E </tex> {{---}} количество ребер между ними. Если же вместо кучи использовать дерево ван Эмде Боаса, то релаксация и поиск минимума будут занимать уже не <tex> \log V </tex>, а <tex> \log k </tex>, и итоговая асимптотика этого алгоритма снизится до <tex> O(E \cdot \log k)</tex>.
 
*[[Алгоритм Дейкстры|алгоритм Дейкстры]]. Данный алгоритм с использованием [[Двоичная куча|двоичной кучи]] для поиска минимума работает за <tex> O(E \cdot \log V)</tex>, где  <tex> V </tex> {{---}} количество вершин в графе, а <tex> E </tex> {{---}} количество ребер между ними. Если же вместо кучи использовать дерево ван Эмде Боаса, то релаксация и поиск минимума будут занимать уже не <tex> \log V </tex>, а <tex> \log k </tex>, и итоговая асимптотика этого алгоритма снизится до <tex> O(E \cdot \log k)</tex>.
  
 
=== Недостатки ===
 
=== Недостатки ===
 
*существенным недостатком данной структуры является то, что она позволяет хранить лишь целые неотрицательные числа, что существенно снижает область ее применения, по сравнению с другими деревьями поиска, которые не используют внутреннюю структуру элементов, хранящихся в них.
 
*существенным недостатком данной структуры является то, что она позволяет хранить лишь целые неотрицательные числа, что существенно снижает область ее применения, по сравнению с другими деревьями поиска, которые не используют внутреннюю структуру элементов, хранящихся в них.
*другим серьезным недостатком является количество занимаемой памяти. Дерево, хранящее <tex> k </tex>-битные числа, занимает <tex> \Theta(2^k) </tex> памяти, что несложно доказывается индукцией, учитывая, что <tex> S(2^k)=(2^{k/2} + 1) \cdot S(2^{k/2}) + O(2^{k/2})</tex>, где <tex> S(2^i) </tex> {{---}} количество памяти, занимаемое деревом, в котором хранятся <tex> i </tex>-битные числа. Впрочем, можно попытаться частично избежать огромного расхода памяти, создавая необходимые поддеревья «лениво», то есть только тогда, когда они нам потребуются.
+
*другим серьезным недостатком является количество занимаемой памяти. Дерево, хранящее <tex> k </tex>-битные числа, занимает <tex> O(2^k) </tex> памяти, что несложно доказывается индукцией, учитывая, что <tex> S(2^k)=(2^{k/2} + 1) \cdot S(2^{k/2}) + O(2^{k/2})</tex>, где <tex> S(2^i) </tex> {{---}} количество памяти, занимаемое деревом, в котором хранятся <tex> i </tex>-битные числа. Впрочем, можно попытаться частично избежать огромного расхода памяти, создавая необходимые поддеревья «лениво», то есть только тогда, когда они нам потребуются.
  
==См. также==
+
== Источники ==
* [[Поисковые структуры данных]]
 
* [[Дерево поиска, наивная реализация|Дерево поиска]]
 
* [[Алгоритм Дейкстры]]
 
 
 
== Источники информации ==
 
  
 
*[http://en.wikipedia.org/wiki/Van_Emde_Boas_tree Van Emde Boas tree — Wikipedia]
 
*[http://en.wikipedia.org/wiki/Van_Emde_Boas_tree Van Emde Boas tree — Wikipedia]
Строка 174: Строка 169:
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Деревья поиска]]
 
[[Категория: Деревья поиска]]
[[Категория: Структуры данных]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: