Редактирование: Дерево поиска, наивная реализация

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 277: Строка 277:
 
Как мы помним, процедура <tex>\mathrm{preorderTraversal}</tex> выводит значения в узлах поддерева следующим образом: сначала идёт до упора влево, затем на каком-то моменте делает шаг вправо и снова движется влево. Это продолжается до тех пор, пока не будут выведены все вершины. Полученная последовательность позволит нам однозначно определить расположение всех узлов поддерева. Первая вершина всегда будет в корне. Затем, пока не будут использованы все значения, будем последовательно подвешивать левых сыновей к последней добавленной вершине, пока не найдём номер, нарушающий убывающую последовательность, а для каждого такого номера будем искать вершину без правого потомка, хранящую наибольшее значение, не превосходящее того, которое хотим поставить, и подвешиваем к ней элемент с таким номером в качестве правого сына. Когда мы, желая найти такую вершину, встречаем какую-нибудь другую, уже имеющую правого сына, проходим по ветке вправо. Мы имеем на это право, так как если такая вершина стоит, то процедура обхода в ней уже побывала и поворачивала вправо, поэтому спускаться в другую сторону смысла не имеет. Вершину с максимальным ключом, с которой будем начинать поиск, будем запоминать. Она будет обновляться каждый раз, когда появится новый максимум.
 
Как мы помним, процедура <tex>\mathrm{preorderTraversal}</tex> выводит значения в узлах поддерева следующим образом: сначала идёт до упора влево, затем на каком-то моменте делает шаг вправо и снова движется влево. Это продолжается до тех пор, пока не будут выведены все вершины. Полученная последовательность позволит нам однозначно определить расположение всех узлов поддерева. Первая вершина всегда будет в корне. Затем, пока не будут использованы все значения, будем последовательно подвешивать левых сыновей к последней добавленной вершине, пока не найдём номер, нарушающий убывающую последовательность, а для каждого такого номера будем искать вершину без правого потомка, хранящую наибольшее значение, не превосходящее того, которое хотим поставить, и подвешиваем к ней элемент с таким номером в качестве правого сына. Когда мы, желая найти такую вершину, встречаем какую-нибудь другую, уже имеющую правого сына, проходим по ветке вправо. Мы имеем на это право, так как если такая вершина стоит, то процедура обхода в ней уже побывала и поворачивала вправо, поэтому спускаться в другую сторону смысла не имеет. Вершину с максимальным ключом, с которой будем начинать поиск, будем запоминать. Она будет обновляться каждый раз, когда появится новый максимум.
  
Процедура восстановления дерева работает за <tex>O(n)</tex>.
+
Процедура восстановления дерева работает за <tex>O(n\log{n})</tex>.
  
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: