Изменения

Перейти к: навигация, поиск

Динамическое программирование

315 байт убрано, 03:53, 15 января 2012
Нет описания правки
==Оптимальная подструктура==
Задача имеет оптимальную подструктуру, если её оптимальное решение может быть рационально составлено из оптимальных решений её подзадач.
Наличие оптимальной подструктуры в задаче используется для определения применимости динамического программирования и жадных алгоритмов для решения оной.
[[Файл:FG.png|150px|thumb|Граф подзадач для чисел Фибоначчи]]
==Оптимальность для подзадач==
Важнейшее свойство задач, которое позволяет решать их с помощью динамического программирования, это оптимальность для подзадач. В зависимости от формулировки задачи, будь то динамическое программирование на отрезке, на префиксе, на дереве, термин оптимальности для подзадач может быть различным, но, в целом, формулируется так: «Если если есть оптимальное решение для некоторой подзадачи, которая возникает в процессе решения задачи, то именно его нужно использовать для решения задачи в целом»целом
==Принцип оптимальности на префиксе==
[[Файл:ST.jpg|200px|thumb|left]]
Рассмотрим некий необратимый процесс производства, например, производство консервов и представим его в виде ввиде ориентированного и ациклического графа. Предположим, что есть свиноферма и свиньи, которые проходят Процесс проходит некий ряд состояний (например, выращиваются, забиваются и отправляются на завод консервов), чтобы стать консервами. Началом производства (первым состоянием) обозначим вершину графа $S$, а конец производства (последнее состояние) $T$. Процесс требует оптимизации, т.е. требуется найти наиболее оптимальный путь $S \rightsquigarrow T$. Он проходит через вершину графа $U$. Префикс оптимального пути $S \rightsquigarrow U$ является оптимальным путём $S \rightsquigarrow U$. Теперь рассмотрим принцип оптимальности для динамического программирования на префиксе. Итак, имеем некоторый оптимальный путь $S \rightsquigarrow T$, который проходит через $U$. Пусть префикс $ \Delta U$, т.е. путь от $S \rightsquigarrow U$, не оптимален. Тогда заменим неоптимальную часть $S \rightsquigarrow U$ пути $S \rightsquigarrow T$ оптимальной, а путь $U \rightsquigarrow T$ добавим в конец. Получим более оптимальный путь $S \rightsquigarrow T$. Принцип оптимальности для подзадач выполняется. Т.е. чтобы получить оптимальный путь из одной вершины графа в другую, префиксы меньших путей должны быть оптимальными.
285
правок

Навигация