Дисперсия случайной величины — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Изменил ссылку на статью про математическое ожидание, до этого переходила на "Дискретная случайная величина")
 
Строка 5: Строка 5:
 
'''Дисперсией''' [[Дискретная случайная величина|случайной величины]] (англ. ''variance'') называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: <tex>D  \xi = E(\xi -E\xi)^2 </tex>, где <tex>\xi</tex> {{---}} случайная величина, а <tex>E</tex> {{---}} символ, обозначающий [[Дискретная случайная величина#Математическое ожидание случайной величины|математическое ожидание]]}}
 
'''Дисперсией''' [[Дискретная случайная величина|случайной величины]] (англ. ''variance'') называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: <tex>D  \xi = E(\xi -E\xi)^2 </tex>, где <tex>\xi</tex> {{---}} случайная величина, а <tex>E</tex> {{---}} символ, обозначающий [[Дискретная случайная величина#Математическое ожидание случайной величины|математическое ожидание]]}}
  
Дисперсия характеризует разброс [[Дискретная случайная величина|случайной величины]] вокруг ее [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]].
+
Дисперсия характеризует разброс [[Дискретная случайная величина|случайной величины]] вокруг ее [[Математическое ожидание случайной величины|математического ожидания]].
  
 
Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного  
 
Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного  

Текущая версия на 22:19, 3 марта 2021


Определение:
Дисперсией случайной величины (англ. variance) называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: [math]D \xi = E(\xi -E\xi)^2 [/math], где [math]\xi[/math] — случайная величина, а [math]E[/math] — символ, обозначающий математическое ожидание


Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.

Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.

Утверждение:
В силу линейности математического ожидания справедлива формула [math]D \xi = E\xi^2 - (E\xi)^2[/math]
[math]\triangleright[/math]

[math]D \xi = E(\xi - E\xi)^2 = E(\xi^2 -2(E\xi)\xi + (E\xi)^2) = [/math]

[math]= E\xi^2 + (E\xi)^2 - 2(E\xi)E\xi = E\xi^2 - (E\xi)^2 [/math]
[math]\triangleleft[/math]

Линейность[править]

Теорема:
Если [math]\xi[/math] и [math]\eta[/math] — независимые случайные величины, то: [math]D(\xi + \eta) = D\xi + D\eta[/math]
Доказательство:
[math]\triangleright[/math]
  • Из определения:
    [math]D(\xi + \eta) = E(\xi + \eta - E(\xi + \eta))^2 = E(\xi - E\xi + \eta - E\eta)^2 =[/math]
[math] = E(\xi - E\xi)^2 + 2E((\xi - E(\xi)(\eta - E\eta)) + E(\eta - E\eta)^2 = D\xi + D\eta + 2(E\xi\eta - E\xi E\eta))[/math]
  • При этом, [math]E\xi\eta - E\xi E\eta = 0[/math], так как [math]\xi[/math] и [math]\eta[/math] — независимые случайные величины.
Действительно,
[math]E\xi\eta = {\sum_{a, b} \limits} abP(\xi = a, \eta = b) = {\sum_{a, b} \limits} abP(\xi = a)P(\eta = b) =[/math] [math] {\sum_{a} \limits} aP(\xi = a) {\sum_{b} \limits} bP(\eta = b) = E\xi E\eta[/math]
[math]\triangleleft[/math]

Свойства[править]

  • Дисперсия любой случайной величины неотрицательна: [math]D\xi \geqslant 0[/math]
  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание
  • Если случайная величина равна константе, то её дисперсия равна нулю: [math]Da = 0[/math]
  • Дисперсия суммы двух случайных величин равна:
    [math]\! D(\xi \pm \psi) = D\xi + D\psi \pm 2\,\text{Cov}(\xi, \psi)[/math], где [math]\! \text{Cov}(\xi, \psi)[/math] — их ковариация
  • [math]D (a\xi) = a^2D\xi[/math], где [math]a[/math] — константа. В частности, [math]D(-\xi) = D\xi[/math]
  • [math]D(\xi+b) = D\xi[/math], где [math]b[/math] — константа.

Связь с центральным моментом[править]

Определение:
Центральным моментом (англ. central moment) [math]k[/math]-ого порядка случайной величины [math]\xi[/math] называется величина [math]\mu_k[/math], определяемая формулой [math]\mu_k = E(\xi -E\xi)^k[/math].

Заметим, что если [math]k[/math] равно двум, то [math]\mu_2 = E(\xi -E\xi)^2 = D \xi[/math]. Таким образом, дисперсия является центральным моментом второго порядка.

Пример[править]

Рассмотрим простой пример вычисления математического ожидания и дисперсии.

Задача:
Найти математическое ожидание и дисперсию числа очков, выпавших на честной игральной кости с первого броска.

[math] \xi(i) = i [/math]

Вычислим математическое ожидание: [math]E\xi = \sum \xi(\omega)p(\omega) = 1\cdot \dfrac{1}{6} +2\cdot \dfrac{1}{6} \dots +6\cdot \dfrac{1}{6} = 3.5[/math]

Вычислим дисперсию: [math]D\xi = E\xi^2 - (E\xi)^2 = 1\cdot \dfrac{1}{6}+4\cdot \dfrac{1}{6} \dots +36\cdot \dfrac{1}{6} - (3.5)^2 \approx 2.9[/math]

См. также[править]

Источники информации[править]