Дисперсия случайной величины — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Пример)
(не показано 7 промежуточных версий 2 участников)
Строка 1: Строка 1:
== Определение ==
 
  
 
{{Определение
 
{{Определение
Строка 11: Строка 10:
 
отклонения случайной величины от ее математического ожидания.
 
отклонения случайной величины от ее математического ожидания.
  
== Замечания ==
+
{{Утверждение
* В силу [[ Линейность математического ожидания|линейности математического ожидания]] справедлива формула:
+
|statement=В силу [[ Линейность математического ожидания|линейности математического ожидания]] справедлива формула <tex>D \xi = E\xi^2 - (E\xi)^2</tex>
*: <tex>D \xi = E\xi^2 - (E\xi)^2</tex>
+
|proof=<tex>D \xi = E(\xi - E\xi)^2 = E(\xi^2 -2(E\xi)\xi + (E\xi)^2) = </tex>
 +
<tex>= E\xi^2 + (E\xi)^2 - 2(E\xi)E\xi = E\xi^2 - (E\xi)^2 </tex>
 +
}}
  
 
== Линейность ==  
 
== Линейность ==  
Строка 29: Строка 30:
 
:Действительно,
 
:Действительно,
  
: <tex>E\xi\eta = {\sum_{a, b} \limits} abP(\xi = a, \eta = b) = {\sum_{a, b} \limits} abP(\xi = a)P(\eta = b) =</tex>
+
: <tex>E\xi\eta = {\sum_{a, b} \limits} abP(\xi = a, \eta = b) = {\sum_{a, b} \limits} abP(\xi = a)P(\eta = b) =</tex> <tex> {\sum_{a} \limits} aP(\xi = a) {\sum_{b} \limits} bP(\eta = b) = E\xi E\eta</tex>
 
 
: <tex> {\sum_{a} \limits} aP(\xi = a) {\sum_{b} \limits} bP(\eta = b) = E\xi E\eta</tex>
 
 
}}
 
}}
  
Строка 42: Строка 41:
 
* <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> {{---}} константа. В частности, <tex>D(-\xi) = D\xi</tex>
 
* <tex>D (a\xi) = a^2D\xi</tex>, где <tex>a</tex> {{---}} константа. В частности, <tex>D(-\xi) = D\xi</tex>
 
* <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> {{---}} константа.
 
* <tex>D(\xi+b) = D\xi</tex>, где <tex>b</tex> {{---}} константа.
 +
== Связь с центральным моментом ==
 +
{{Определение
 +
|id = def1
 +
|definition=<b>Центральным моментом</b> (англ. ''central moment'') <tex>k</tex>-ого порядка случайной величины <tex>\xi</tex> называется величина <tex>\mu_k</tex>, определяемая формулой <tex>\mu_k = E(\xi -E\xi)^k</tex>.
 +
}}
 +
Заметим, что если <tex>k</tex> равно двум, то <tex>\mu_2 = E(\xi -E\xi)^2 = D \xi</tex>.
 +
Таким образом, дисперсия является центральным моментом второго порядка.
  
 
== Пример ==
 
== Пример ==
 
Рассмотрим простой пример вычисления [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]] и дисперсии.
 
Рассмотрим простой пример вычисления [[Дискретная случайная величина#Математическое ожидание случайной величины|математического ожидания]] и дисперсии.
 
{{Задача
 
{{Задача
|definition=Найдем математическое ожидание и дисперсию числа очков, выпавших на кубике с первого броска.
+
|definition=Найти математическое ожидание и дисперсию числа очков, выпавших на честной игральной кости с первого броска.
 
}}
 
}}
 
<tex> \xi(i) = i </tex>
 
<tex> \xi(i) = i </tex>
  
Вычислим математическое ожидание: <tex>E\xi = \sum \xi(\omega)p(\omega) = 1\cdot 1/6+2\cdot 1/6 \dots +6\cdot 1/6 = 3.5</tex>
+
Вычислим математическое ожидание: <tex>E\xi = \sum \xi(\omega)p(\omega) = 1\cdot \dfrac{1}{6} +2\cdot \dfrac{1}{6} \dots +6\cdot \dfrac{1}{6} = 3.5</tex>
 
 
Вычислим дисперсию: <tex>D\xi = E\xi^2 - (E\xi)^2 = 1\cdot 1/6+4\cdot 1/6 \dots +36\cdot 1/6 - (3.5)^2 \approx 2.9</tex>
 
  
== Источники ==
+
Вычислим дисперсию: <tex>D\xi = E\xi^2 - (E\xi)^2 = 1\cdot \dfrac{1}{6}+4\cdot \dfrac{1}{6} \dots +36\cdot \dfrac{1}{6} - (3.5)^2 \approx 2.9</tex>
*Дискретный анализ, Романовский И. В.
 
  
 +
== См. также ==
 +
*[[Ковариация случайных величин|Ковариация случайных величин]]
 +
*[[Корреляция случайных величин|Корреляция случайных величин]]
 +
== Источники информации ==
 +
*''Романовский И. В.'' Дискретный анализ, 3-е изд.: Издательский дом "Невский диалект", 2003 {{---}} стр. 68.
 +
*[https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%B8%D1%8F_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B Википедия {{---}} Дисперсия случайной величины]
 +
*[https://en.wikipedia.org/wiki/Variance Wikipedia {{---}} Variance]
 +
*[http://www.exponenta.ru/educat/class/courses/tv/theme0/3.asp#2 EXPonenta.ru {{---}} Числовые характеристики случайных величин]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Теория вероятности]]
 
[[Категория: Теория вероятности]]

Версия 22:10, 29 февраля 2016


Определение:
Дисперсией случайной величины (англ. variance) называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: [math]D \xi = E(\xi -E\xi)^2 [/math], где [math]\xi[/math] — случайная величина, а [math]E[/math] — символ, обозначающий математическое ожидание


Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.

Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.

Утверждение:
В силу линейности математического ожидания справедлива формула [math]D \xi = E\xi^2 - (E\xi)^2[/math]
[math]\triangleright[/math]

[math]D \xi = E(\xi - E\xi)^2 = E(\xi^2 -2(E\xi)\xi + (E\xi)^2) = [/math]

[math]= E\xi^2 + (E\xi)^2 - 2(E\xi)E\xi = E\xi^2 - (E\xi)^2 [/math]
[math]\triangleleft[/math]

Линейность

Теорема:
Если [math]\xi[/math] и [math]\eta[/math] — независимые случайные величины, то: [math]D(\xi + \eta) = D\xi + D\eta[/math]
Доказательство:
[math]\triangleright[/math]
  • Из определения:
    [math]D(\xi + \eta) = E(\xi + \eta - E(\xi + \eta))^2 = E(\xi - E\xi + \eta - E\eta)^2 =[/math]
[math] = E(\xi - E\xi)^2 + 2E((\xi - E(\xi)(\eta - E\eta)) + E(\eta - E\eta)^2 = D\xi + D\eta + 2(E\xi\eta - E\xi E\eta))[/math]
  • При этом, [math]E\xi\eta - E\xi E\eta = 0[/math], так как [math]\xi[/math] и [math]\eta[/math] — независимые случайные величины.
Действительно,
[math]E\xi\eta = {\sum_{a, b} \limits} abP(\xi = a, \eta = b) = {\sum_{a, b} \limits} abP(\xi = a)P(\eta = b) =[/math] [math] {\sum_{a} \limits} aP(\xi = a) {\sum_{b} \limits} bP(\eta = b) = E\xi E\eta[/math]
[math]\triangleleft[/math]

Свойства

  • Дисперсия любой случайной величины неотрицательна: [math]D\xi \geqslant 0[/math]
  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание
  • Если случайная величина равна константе, то её дисперсия равна нулю: [math]Da = 0[/math]
  • Дисперсия суммы двух случайных величин равна:
    [math]\! D(\xi \pm \psi) = D\xi + D\psi \pm 2\,\text{Cov}(\xi, \psi)[/math], где [math]\! \text{Cov}(\xi, \psi)[/math] — их ковариация
  • [math]D (a\xi) = a^2D\xi[/math], где [math]a[/math] — константа. В частности, [math]D(-\xi) = D\xi[/math]
  • [math]D(\xi+b) = D\xi[/math], где [math]b[/math] — константа.

Связь с центральным моментом

Определение:
Центральным моментом (англ. central moment) [math]k[/math]-ого порядка случайной величины [math]\xi[/math] называется величина [math]\mu_k[/math], определяемая формулой [math]\mu_k = E(\xi -E\xi)^k[/math].

Заметим, что если [math]k[/math] равно двум, то [math]\mu_2 = E(\xi -E\xi)^2 = D \xi[/math]. Таким образом, дисперсия является центральным моментом второго порядка.

Пример

Рассмотрим простой пример вычисления математического ожидания и дисперсии.

Задача:
Найти математическое ожидание и дисперсию числа очков, выпавших на честной игральной кости с первого броска.

[math] \xi(i) = i [/math]

Вычислим математическое ожидание: [math]E\xi = \sum \xi(\omega)p(\omega) = 1\cdot \dfrac{1}{6} +2\cdot \dfrac{1}{6} \dots +6\cdot \dfrac{1}{6} = 3.5[/math]

Вычислим дисперсию: [math]D\xi = E\xi^2 - (E\xi)^2 = 1\cdot \dfrac{1}{6}+4\cdot \dfrac{1}{6} \dots +36\cdot \dfrac{1}{6} - (3.5)^2 \approx 2.9[/math]

См. также

Источники информации