Редактирование: Доказательства с нулевым разглашением
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 21: | Строка 21: | ||
* Виктор выбирает случайный бит <tex>i \leftarrow \{0,1\}</tex> | * Виктор выбирает случайный бит <tex>i \leftarrow \{0,1\}</tex> | ||
* Виктор просит Пегги доказать изоморфизм <tex>G_i</tex> и <tex>H</tex>, то есть предоставить соответствие вершин этих двух графов. | * Виктор просит Пегги доказать изоморфизм <tex>G_i</tex> и <tex>H</tex>, то есть предоставить соответствие вершин этих двух графов. | ||
− | * Если <tex>i = 0</tex>, то Пегги отсылает | + | * Если <tex>i = 0</tex>, то Пегги отсылает Пете <tex>\phi</tex>, иначе <tex>\phi \cdot \pi</tex> |
В каждом раунде Виктор выбирает новый случайный бит, который неизвестен Пегги. Поэтому чтобы ответить на оба вопроса, Пегги нужно чтобы <tex>H</tex> был в самом деле изоморфен <tex>G_i</tex>. Это означает, что после достаточного числа раундов, Виктор может быть уверен в том, что графы <tex>G_0</tex> и <tex>G_1</tex> изоморфны. С другой стороны, Пегги не раскрывает никакой информации о перестановке <tex>\pi</tex>. Более того, Виктору сложно будет доказать кому-либо ещё изоморфизм этих графов. | В каждом раунде Виктор выбирает новый случайный бит, который неизвестен Пегги. Поэтому чтобы ответить на оба вопроса, Пегги нужно чтобы <tex>H</tex> был в самом деле изоморфен <tex>G_i</tex>. Это означает, что после достаточного числа раундов, Виктор может быть уверен в том, что графы <tex>G_0</tex> и <tex>G_1</tex> изоморфны. С другой стороны, Пегги не раскрывает никакой информации о перестановке <tex>\pi</tex>. Более того, Виктору сложно будет доказать кому-либо ещё изоморфизм этих графов. |