Доказательство нерегулярности языков: лемма о разрастании — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 10: Строка 10:
 
[[Файл:Consp_lemma.png||left|240px|]] Пусть <tex>L</tex> — регулярный язык над алфавитом <tex>\Sigma</tex>. Поскольку [[Теорема Клини (совпадение классов автоматных и регулярных языков)|регулярный язык является автоматным]], то найдётся автомат <tex>A</tex>, допускающий язык <tex>L</tex>. Пусть <tex>n</tex> — размер автомата. Докажем, что <tex>n</tex> удовлетворяет условию леммы.
 
[[Файл:Consp_lemma.png||left|240px|]] Пусть <tex>L</tex> — регулярный язык над алфавитом <tex>\Sigma</tex>. Поскольку [[Теорема Клини (совпадение классов автоматных и регулярных языков)|регулярный язык является автоматным]], то найдётся автомат <tex>A</tex>, допускающий язык <tex>L</tex>. Пусть <tex>n</tex> — размер автомата. Докажем, что <tex>n</tex> удовлетворяет условию леммы.
 
<br/>Возьмём произвольное слово <tex>\omega</tex> длины не меньше <tex>n</tex> из языка <tex>L</tex>. Рассмотрим переходы в автомате <tex>\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\rangle\vdash\dots\vdash\langle u_{l},\varepsilon\rangle, \: l\geqslant n</tex>. Так как <tex>l</tex> не меньше количества состояний в автомате <tex>n</tex>, то в переходах будет совпадение. Пусть <tex>u_i</tex> и <tex>u_j</tex> — первое совпадение. Тогда, повторяя участок слова <tex>\omega</tex>, который отвечает за переход от <tex>u_i</tex> к <tex>u_j</tex>, получаем слово, допускаемое автоматом. То есть, если верно <tex>\langle s, xyz\rangle \vdash^*\langle u_i, yz\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>, то тогда верно <tex>\langle s, xy^kz\rangle \vdash^*\langle u_i, y^kz\rangle\vdash^*\langle u_j, y^{k-1}z\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>. Тогда автомат <tex>A</tex> допускает слово <tex>xy^kz</tex>, следовательно <tex>xy^kz</tex> принадлежит регулярному языку <tex>L</tex>.<br />
 
<br/>Возьмём произвольное слово <tex>\omega</tex> длины не меньше <tex>n</tex> из языка <tex>L</tex>. Рассмотрим переходы в автомате <tex>\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\rangle\vdash\dots\vdash\langle u_{l},\varepsilon\rangle, \: l\geqslant n</tex>. Так как <tex>l</tex> не меньше количества состояний в автомате <tex>n</tex>, то в переходах будет совпадение. Пусть <tex>u_i</tex> и <tex>u_j</tex> — первое совпадение. Тогда, повторяя участок слова <tex>\omega</tex>, который отвечает за переход от <tex>u_i</tex> к <tex>u_j</tex>, получаем слово, допускаемое автоматом. То есть, если верно <tex>\langle s, xyz\rangle \vdash^*\langle u_i, yz\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>, то тогда верно <tex>\langle s, xy^kz\rangle \vdash^*\langle u_i, y^kz\rangle\vdash^*\langle u_j, y^{k-1}z\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>. Тогда автомат <tex>A</tex> допускает слово <tex>xy^kz</tex>, следовательно <tex>xy^kz</tex> принадлежит регулярному языку <tex>L</tex>.<br />
Наконец, поскольку <tex>u_i</tex> и <tex>u_j</tex> — первое совпадение, среди состояний <tex>s, u_1, \ldots, u_i, \ldots, u_{j-1}</tex> нет повторяющихся. Значит, выполняется требование <tex>|xy| \le n</tex>.
+
Наконец, поскольку <tex>u_i</tex> и <tex>u_j</tex> — первое совпадение, среди состояний <tex>s, u_1, \ldots, u_i, \ldots, u_{j-1}</tex> нет повторяющихся. Значит, выполняется требование <tex>|xy| \leqslant n</tex>.
 
}}
 
}}
 
'''Замечание.''' Условие леммы не является достаточным для регулярности языка. ''(См. [[#Пример нерегулярного языка, для которого выполняется лемма о разрастании|пример]])''
 
'''Замечание.''' Условие леммы не является достаточным для регулярности языка. ''(См. [[#Пример нерегулярного языка, для которого выполняется лемма о разрастании|пример]])''
Строка 16: Строка 16:
 
== Лемма о разрастании в общем виде ==
 
== Лемма о разрастании в общем виде ==
  
Если язык <tex>L</tex> является регулярным, то существует число <tex>p \ge 1</tex> такое что для любого слова <tex>uwv</tex> из языка <tex>L</tex>, где <tex>|w| \ge p</tex> может быть записано в форме <tex>uwv = uxyzv</tex>,
+
Если язык <tex>L</tex> является регулярным, то существует число <tex>p \geqslant 1</tex> такое что для любого слова <tex>uwv</tex> из языка <tex>L</tex>, где <tex>|w| \geqslant p</tex> может быть записано в форме <tex>uwv = uxyzv</tex>,
где слова <tex>x</tex>, <tex>y</tex> и <tex>z</tex> такие, что <tex>|xy| \le p</tex>, <tex>|y| \ge 1</tex> и <tex>uxy^izv</tex> принадлежит языку <tex>L</tex> для любого целого числа <tex>i \ge 0</tex>.
+
где слова <tex>x</tex>, <tex>y</tex> и <tex>z</tex> такие, что <tex>|xy| \leqslant p</tex>, <tex>|y| \geqslant 1</tex> и <tex>uxy^izv</tex> принадлежит языку <tex>L</tex> для любого целого числа <tex>i \geqslant 0</tex>.
  
 
Исходя из этого, стандартная версия леммы, которая описана выше, является особым случаем, в котором строки <tex>u</tex> и <tex>v</tex> пусты.
 
Исходя из этого, стандартная версия леммы, которая описана выше, является особым случаем, в котором строки <tex>u</tex> и <tex>v</tex> пусты.
  
Поскольку лемма в общем виде  накладывает более жесткие требования на язык, то она может быть использована для доказательства нерегулярности многих других языков, таких как <tex> L =\{ a^mb^nc^n : m \ge 1 , n \ge 1 \}</tex>.
+
Поскольку лемма в общем виде  накладывает более жесткие требования на язык, то она может быть использована для доказательства нерегулярности многих других языков, таких как <tex> L =\{ a^mb^nc^n : m \geqslant 1 , n \geqslant 1 \}</tex>.
  
 
== Использование леммы для доказательства нерегулярности языков ==
 
== Использование леммы для доказательства нерегулярности языков ==
Строка 30: Строка 30:
  
 
== Пример нерегулярного языка, для которого выполняется лемма о разрастании==
 
== Пример нерегулярного языка, для которого выполняется лемма о разрастании==
Рассмотрим следующий язык: <tex>L= \{ a^{i}b^{j}c^{k} \mid i \ne 1, j \ge 0, k \ge 0\} \cup \{ ab^{i}c^{i} \mid i \ge 1\}</tex>
+
Рассмотрим следующий язык: <tex>L= \{ a^{i}b^{j}c^{k} \mid i \ne 1, j \geqslant 0, k \geqslant 0\} \cup \{ ab^{i}c^{i} \mid i \geqslant 1\}</tex>
  
 
'''Докажем, что он нерегулярный.''' Для этого рассмотрим вспомогательный язык  <tex>L'= \{ ab^{i}c^{i} \mid i \ge 1\}</tex> и докажем его нерегулярность. Воспользуемся предложенным в предыдущем пункте подходом. Для фиксированного <tex>n</tex> выберем слово <tex>\omega=ab^nc^n</tex>. Заметим, что при любом разбиении <tex>\omega</tex> на <tex>x, y, z</tex> слово <tex> y </tex> не пусто (по условию леммы) и содержит только символы <tex> a </tex> и <tex> b </tex> (согласно выбранному слову и условию из леммы <tex>|xy|\leqslant n</tex>). Это означает, что при <tex> k = 0 </tex> слово <tex>xy^kz</tex> либо не содержит символа <tex> a </tex>, либо количество символов <tex> b</tex> меньше <tex> n </tex>. В обоих случаях полученное слово не принадлежит языку. Значит язык <tex> L' </tex> нерегулярный.
 
'''Докажем, что он нерегулярный.''' Для этого рассмотрим вспомогательный язык  <tex>L'= \{ ab^{i}c^{i} \mid i \ge 1\}</tex> и докажем его нерегулярность. Воспользуемся предложенным в предыдущем пункте подходом. Для фиксированного <tex>n</tex> выберем слово <tex>\omega=ab^nc^n</tex>. Заметим, что при любом разбиении <tex>\omega</tex> на <tex>x, y, z</tex> слово <tex> y </tex> не пусто (по условию леммы) и содержит только символы <tex> a </tex> и <tex> b </tex> (согласно выбранному слову и условию из леммы <tex>|xy|\leqslant n</tex>). Это означает, что при <tex> k = 0 </tex> слово <tex>xy^kz</tex> либо не содержит символа <tex> a </tex>, либо количество символов <tex> b</tex> меньше <tex> n </tex>. В обоих случаях полученное слово не принадлежит языку. Значит язык <tex> L' </tex> нерегулярный.
Строка 36: Строка 36:
 
Предположим, что язык <tex> L </tex> регулярный. Заметим, что <tex>L' = L \cap \{ab^{*}c^{*}\} </tex>.  В силу того, что пересечение регулярных языков регулярно, имеем в правой части равенства регулярный язык. При этом в левой части стоит язык, нерегулярность которого была доказана ранее. Значит наше предположение неверно, и язык <tex> L </tex> нерегулярный.
 
Предположим, что язык <tex> L </tex> регулярный. Заметим, что <tex>L' = L \cap \{ab^{*}c^{*}\} </tex>.  В силу того, что пересечение регулярных языков регулярно, имеем в правой части равенства регулярный язык. При этом в левой части стоит язык, нерегулярность которого была доказана ранее. Значит наше предположение неверно, и язык <tex> L </tex> нерегулярный.
  
'''Докажем, что язык удовлетворяет лемме о разрастании.''' Выберем в лемме <tex> n = 2 </tex>.  Это означает, что длина рассматриваемых слов не меньше <tex> 2 </tex> (иными словами <tex> i + j + k \ge 2 </tex>). Для каждого случая значений <tex> i, j, k </tex> выберем соответствующие слова <tex> x, y </tex> и <tex> z </tex> из леммы. Легко проверить, что в каждом из приведенных ниже случаев условие леммы выполняется:  
+
'''Докажем, что язык удовлетворяет лемме о разрастании.''' Выберем в лемме <tex> n = 2 </tex>.  Это означает, что длина рассматриваемых слов не меньше <tex> 2 </tex> (иными словами <tex> i + j + k \geqslant 2 </tex>). Для каждого случая значений <tex> i, j, k </tex> выберем соответствующие слова <tex> x, y </tex> и <tex> z </tex> из леммы. Легко проверить, что в каждом из приведенных ниже случаев условие леммы выполняется:  
# <tex> i = 0, j = 0, k \ge 2 </tex>. Слово имеет вид <tex>\omega=c^k</tex>. Выберем <tex> x = \varepsilon, y = c, z = c^{k-1}</tex>.
+
# <tex> i = 0, j = 0, k \geqslant 2 </tex>. Слово имеет вид <tex>\omega=c^k</tex>. Выберем <tex> x = \varepsilon, y = c, z = c^{k-1}</tex>.
# <tex> i = 0, j \ge 1, k \ge 0 </tex>. Слово имеет вид <tex>\omega=b^jc^k</tex>. Выберем <tex> x = \varepsilon, y = b, z = b^{j-1}c^k</tex>.
+
# <tex> i = 0, j \geqslant 1, k \geqslant 0 </tex>. Слово имеет вид <tex>\omega=b^jc^k</tex>. Выберем <tex> x = \varepsilon, y = b, z = b^{j-1}c^k</tex>.
# <tex> i = 1, j \ge 1, j = k </tex>. Слово имеет вид <tex>\omega=ab^jc^j</tex>. Выберем <tex> x = \varepsilon, y = a, z = b^jc^j</tex>.
+
# <tex> i = 1, j \geqslant 1, j = k </tex>. Слово имеет вид <tex>\omega=ab^jc^j</tex>. Выберем <tex> x = \varepsilon, y = a, z = b^jc^j</tex>.
# <tex> i = 2, j \ge 1, k \ge 1 </tex>. Слово имеет вид <tex>\omega=aab^jc^k</tex>. Выберем <tex> x = \varepsilon, y = aa, z = b^jc^k</tex>.
+
# <tex> i = 2, j \geqslant 1, k \geqslant 1 </tex>. Слово имеет вид <tex>\omega=aab^jc^k</tex>. Выберем <tex> x = \varepsilon, y = aa, z = b^jc^k</tex>.
# <tex> i \ge 3, j \ge 1, k \ge 1 </tex>. Слово имеет вид <tex>\omega=aaaa^{i-3}b^jc^k</tex>. Выберем <tex> x = \varepsilon, y = a, z = aaa^{i-3}b^jc^k</tex>.
+
# <tex> i \geqslant 3, j \geqslant 1, k \geqslant 1 </tex>. Слово имеет вид <tex>\omega=aaaa^{i-3}b^jc^k</tex>. Выберем <tex> x = \varepsilon, y = a, z = aaa^{i-3}b^jc^k</tex>.
  
 
'''Таким образом''', язык <tex> L </tex> удовлетворяет второй части леммы и при этом является нерегулярным, что доказывает тот факт, что лемма о разрастании '''не''' является достаточным для регулярности языка.
 
'''Таким образом''', язык <tex> L </tex> удовлетворяет второй части леммы и при этом является нерегулярным, что доказывает тот факт, что лемма о разрастании '''не''' является достаточным для регулярности языка.

Версия 19:02, 2 ноября 2016

Лемма о разрастании[1](Pumping lemma) — лемма, позволяющая во многих случаях проверить, является ли данный язык регулярным.

Лемма о разрастании

Лемма (о разрастании, о накачке):
Пусть [math]L[/math]регулярный язык над алфавитом [math]\Sigma[/math], тогда существует такое [math]n[/math], что для любого слова [math] \omega \in L[/math] длины не меньше [math]n[/math] найдутся слова [math] x,y,z \in \Sigma^*[/math], для которых верно: [math]xyz=\omega, y\neq \varepsilon, |xy|\leqslant n[/math] и [math]\forall k \geqslant 0~xy^{k}z\in L[/math].
Доказательство:
[math]\triangleright[/math]
Consp lemma.png
Пусть [math]L[/math] — регулярный язык над алфавитом [math]\Sigma[/math]. Поскольку регулярный язык является автоматным, то найдётся автомат [math]A[/math], допускающий язык [math]L[/math]. Пусть [math]n[/math] — размер автомата. Докажем, что [math]n[/math] удовлетворяет условию леммы.


Возьмём произвольное слово [math]\omega[/math] длины не меньше [math]n[/math] из языка [math]L[/math]. Рассмотрим переходы в автомате [math]\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\rangle\vdash\dots\vdash\langle u_{l},\varepsilon\rangle, \: l\geqslant n[/math]. Так как [math]l[/math] не меньше количества состояний в автомате [math]n[/math], то в переходах будет совпадение. Пусть [math]u_i[/math] и [math]u_j[/math] — первое совпадение. Тогда, повторяя участок слова [math]\omega[/math], который отвечает за переход от [math]u_i[/math] к [math]u_j[/math], получаем слово, допускаемое автоматом. То есть, если верно [math]\langle s, xyz\rangle \vdash^*\langle u_i, yz\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle[/math], то тогда верно [math]\langle s, xy^kz\rangle \vdash^*\langle u_i, y^kz\rangle\vdash^*\langle u_j, y^{k-1}z\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle[/math]. Тогда автомат [math]A[/math] допускает слово [math]xy^kz[/math], следовательно [math]xy^kz[/math] принадлежит регулярному языку [math]L[/math].

Наконец, поскольку [math]u_i[/math] и [math]u_j[/math] — первое совпадение, среди состояний [math]s, u_1, \ldots, u_i, \ldots, u_{j-1}[/math] нет повторяющихся. Значит, выполняется требование [math]|xy| \leqslant n[/math].
[math]\triangleleft[/math]

Замечание. Условие леммы не является достаточным для регулярности языка. (См. пример)

Лемма о разрастании в общем виде

Если язык [math]L[/math] является регулярным, то существует число [math]p \geqslant 1[/math] такое что для любого слова [math]uwv[/math] из языка [math]L[/math], где [math]|w| \geqslant p[/math] может быть записано в форме [math]uwv = uxyzv[/math], где слова [math]x[/math], [math]y[/math] и [math]z[/math] такие, что [math]|xy| \leqslant p[/math], [math]|y| \geqslant 1[/math] и [math]uxy^izv[/math] принадлежит языку [math]L[/math] для любого целого числа [math]i \geqslant 0[/math].

Исходя из этого, стандартная версия леммы, которая описана выше, является особым случаем, в котором строки [math]u[/math] и [math]v[/math] пусты.

Поскольку лемма в общем виде накладывает более жесткие требования на язык, то она может быть использована для доказательства нерегулярности многих других языков, таких как [math] L =\{ a^mb^nc^n : m \geqslant 1 , n \geqslant 1 \}[/math].

Использование леммы для доказательства нерегулярности языков

Для доказательства нерегулярности языка часто удобно использовать отрицание леммы о разрастании. Пусть [math]L[/math] — язык над алфавитом [math]\Sigma[/math]. Если для любого натурального [math]n[/math] найдётся такое слово [math]\omega[/math] из данного языка, что его длина будет не меньше [math] n[/math] и при любом разбиении на три слова [math]x,y,z[/math] такие, что [math]y[/math] непустое и длина [math]xy[/math] не больше [math]n[/math], существует такое [math]k[/math], что [math]xy^kz \notin L[/math], то язык [math]L[/math] нерегулярный.

Рассмотрим такой подход на примере языка правильных скобочных последовательностей. Для фиксированного [math]n[/math] предъявляем слово [math]\omega=(^n)^n[/math]. Пусть [math]\omega[/math] как-то разбили на [math]x, y, z[/math]. Так как [math]|xy|\leqslant n[/math], то [math]y=(^b[/math], где [math]b \gt 0[/math]. Для любого такого разбиения берём [math]k=2[/math] и получаем [math]xy^kz=(^{n+b})^n[/math], что не является правильной скобочной последовательностью. Значит, язык правильных скобочных последовательностей нерегулярен.

Пример нерегулярного языка, для которого выполняется лемма о разрастании

Рассмотрим следующий язык: [math]L= \{ a^{i}b^{j}c^{k} \mid i \ne 1, j \geqslant 0, k \geqslant 0\} \cup \{ ab^{i}c^{i} \mid i \geqslant 1\}[/math]

Докажем, что он нерегулярный. Для этого рассмотрим вспомогательный язык [math]L'= \{ ab^{i}c^{i} \mid i \ge 1\}[/math] и докажем его нерегулярность. Воспользуемся предложенным в предыдущем пункте подходом. Для фиксированного [math]n[/math] выберем слово [math]\omega=ab^nc^n[/math]. Заметим, что при любом разбиении [math]\omega[/math] на [math]x, y, z[/math] слово [math] y [/math] не пусто (по условию леммы) и содержит только символы [math] a [/math] и [math] b [/math] (согласно выбранному слову и условию из леммы [math]|xy|\leqslant n[/math]). Это означает, что при [math] k = 0 [/math] слово [math]xy^kz[/math] либо не содержит символа [math] a [/math], либо количество символов [math] b[/math] меньше [math] n [/math]. В обоих случаях полученное слово не принадлежит языку. Значит язык [math] L' [/math] нерегулярный.

Предположим, что язык [math] L [/math] регулярный. Заметим, что [math]L' = L \cap \{ab^{*}c^{*}\} [/math]. В силу того, что пересечение регулярных языков регулярно, имеем в правой части равенства регулярный язык. При этом в левой части стоит язык, нерегулярность которого была доказана ранее. Значит наше предположение неверно, и язык [math] L [/math] нерегулярный.

Докажем, что язык удовлетворяет лемме о разрастании. Выберем в лемме [math] n = 2 [/math]. Это означает, что длина рассматриваемых слов не меньше [math] 2 [/math] (иными словами [math] i + j + k \geqslant 2 [/math]). Для каждого случая значений [math] i, j, k [/math] выберем соответствующие слова [math] x, y [/math] и [math] z [/math] из леммы. Легко проверить, что в каждом из приведенных ниже случаев условие леммы выполняется:

  1. [math] i = 0, j = 0, k \geqslant 2 [/math]. Слово имеет вид [math]\omega=c^k[/math]. Выберем [math] x = \varepsilon, y = c, z = c^{k-1}[/math].
  2. [math] i = 0, j \geqslant 1, k \geqslant 0 [/math]. Слово имеет вид [math]\omega=b^jc^k[/math]. Выберем [math] x = \varepsilon, y = b, z = b^{j-1}c^k[/math].
  3. [math] i = 1, j \geqslant 1, j = k [/math]. Слово имеет вид [math]\omega=ab^jc^j[/math]. Выберем [math] x = \varepsilon, y = a, z = b^jc^j[/math].
  4. [math] i = 2, j \geqslant 1, k \geqslant 1 [/math]. Слово имеет вид [math]\omega=aab^jc^k[/math]. Выберем [math] x = \varepsilon, y = aa, z = b^jc^k[/math].
  5. [math] i \geqslant 3, j \geqslant 1, k \geqslant 1 [/math]. Слово имеет вид [math]\omega=aaaa^{i-3}b^jc^k[/math]. Выберем [math] x = \varepsilon, y = a, z = aaa^{i-3}b^jc^k[/math].

Таким образом, язык [math] L [/math] удовлетворяет второй части леммы и при этом является нерегулярным, что доказывает тот факт, что лемма о разрастании не является достаточным для регулярности языка.

См. также

Примечания

  1. Лемму также часто называют леммой о накачке.

Источники

  • Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — М.:Издательский дом «Вильямс», 2002. — С. 144. — ISBN 5-8459-0261-4
  • Wikipedia — Pumping lemma for regular languages