Задача коммивояжера, ДП по подмножествам — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Оптимизация решения)
(Динамическое программирование по подмножествам (по маскам))
Строка 20: Строка 20:
 
вершин, пронумерованных от <tex>0</tex> до <tex>N-1</tex> и каждое ребро <tex>(i, j) \in E </tex> имеет некоторый вес <tex> w(i,j)</tex>. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.
 
вершин, пронумерованных от <tex>0</tex> до <tex>N-1</tex> и каждое ребро <tex>(i, j) \in E </tex> имеет некоторый вес <tex> w(i,j)</tex>. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.
  
Зафиксируем начальную вершину <tex>s</tex> и будем искать гамильтонов цикл наименьшей стоимости — путь от <tex>s</tex> до <tex>s</tex>, проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор <tex>s</tex> не имеет значения. Поэтому будем считать <tex>s = 0 </tex>.
+
[[ Гамильтоновы графы | Подробнее можно прочитать в этой статье.]]
 
 
Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>mask_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>mask</tex>.
 
 
 
Обозначим <tex>d[i][mask]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex>0</tex>, проходящую (не считая вершины <tex>i</tex>) единожды по всем тем и только тем вершинам <tex>j</tex>, для которых <tex>mask_j = 1</tex> (т.е. <tex>d[i][mask]</tex> уже  найденный оптимальный путь от <tex>i</tex>-ой вершины до <tex>0</tex>-ой, проходящий через те вершины, где <tex>mask_j=1</tex>. Если <tex>mask_j=0</tex>,то эти вершины еще не посещены).
 
 
 
*Начальное состояние — когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен <tex>0</tex> (т.е. <tex>i = 0</tex> и <tex>mask = 0</tex>).
 
*Для остальных состояний (<tex>i \ne 0</tex> или <tex>mask \ne 0</tex>) перебираем все возможные переходы в <tex>i</tex>-ую вершину из любой посещенной ранее и выбираем минимальный результат.
 
*Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>).
 
 
 
Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> — стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени.
 
 
 
Для того, чтобы восстановить сам путь, воспользуемся соотношением <tex> d[i][mask] = w(i, j) + d[j][mask - 2^j] </tex>,  которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния <tex> i = 0 </tex>, <tex> mask = 2^n - 1</tex>, найдем вершину <tex>j</tex>, для которой выполняется указанное соотношение, добавим <tex>j</tex> в ответ, пересчитаем текущее состояние как <tex>i = j</tex>, <tex> mask = mask - 2^j </tex>. Процесс заканчивается в состоянии <tex>i = 0</tex>, <tex> mask = 0 </tex>.
 
  
 
==== Оптимизация решения ====
 
==== Оптимизация решения ====

Версия 20:01, 9 января 2016

Задача:
Задача о коммивояжере (англ. Travelling salesman problem, TSP) — задача, в которой коммивояжер должен посетить [math] N [/math] городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?


Варианты решения

NP-полнота задач о гамильтоновом цикле и пути в графах

Так вот задача о коммивояжере относится к классу NP-полных задач. Поэтому, рассмотрим два варианта решения с экспоненциальным временем работы.

Перебор перестановок

Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все [math] N! [/math] всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших [math]N[/math]. Сложность алгоритма [math]O({N!}\times{N})[/math].

Динамическое программирование по подмножествам (по маскам)

Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.

Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам — дороги. Пусть в графе [math] G=(V,E)[/math] [math] N [/math] вершин, пронумерованных от [math]0[/math] до [math]N-1[/math] и каждое ребро [math](i, j) \in E [/math] имеет некоторый вес [math] w(i,j)[/math]. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.

Подробнее можно прочитать в этой статье.

Оптимизация решения

Пусть [math]dp[mask][i][/math] содержит булево значение — существует ли в подмножества [math]mask[/math] гамильтонов путь, заканчивающийся в вершине [math]i[/math].

Сама динамика будет такая:
[math] d[mask][i] = \left\{\begin{array}{llcl} 1&;\ |mask| = 1,\ mask_i = 1\\ \bigvee_{mask[j]=1, (j, i) \in E}\limits d[mask \oplus 2^i][j] &;\ |mask| \gt  1,\ mask_i= 1 \\  0&;\ otherwise\\ \end{array}\right. [/math]

Это решение требует [math]O(2^nn)[/math] памяти и [math]O(2^nn^2)[/math] времени. Эту оценку можно улучшить, если изменить динамику следующим образом.

Пусть теперь [math]d'[mask][/math] хранит маску подмножества всех вершин, для которых существует гамильтонов путь в подмножестве [math]mask[/math], заканчивающихся в этой вершине. Другими словами, сожмем предыдущую динамику: [math]d'[mask][/math] будет равно [math]\sum_{i \in [0..n-1]}\limits d[mask][i] \cdot 2 ^i [/math]. Для графа [math]G[/math] выпишем [math]n[/math] масок [math]M_i[/math], для каждой вершины задающие множество вершин, которые связаны ребром в данной вершиной. То есть [math]M_i = \sum_{j \in [0..n-1]}\limits 2^i \cdot ((i, j) \in E ? 1:0) [/math].

Тогда динамика перепишется следующим образом:
[math] d'[mask][i] = \left\{\begin{array}{llcl} 2^i&;\ |mask| = 1,\ mask_i = 1\\ \sum_{j \in [0..n-1]}\limits 2^i \cdot ((d[mask \oplus 2^i] \& M_i) \neq 0?1:0) &;\ |mask| \gt  1 \\  0&;\ otherwise\\ \end{array}\right. [/math]

Особое внимание следует уделить выражению [math]d[mask \oplus 2^i] \& M_i[/math] . Первая часть выражения содержит подмножество вершин, для которых существует гамильтонов путь, заканчивающихся в соответствующих вершинах в подмножестве [math]mask[/math] без вершины [math]i[/math], а вторая — подмножество вершин, связанных с [math]i[/math] ребром. Если эти множества пересекаются хотя бы по одной вершине (их [math]\&[/math] не равен [math]0[/math]), то, как нетрудно понять, в [math]mask[/math] существует гамильтонов путь, заканчивающийся в вершине [math]i[/math].

Окончательная проверка состоит в сравнении [math]d[2^n - 1][/math] c [math]0[/math].

Это решение использует [math]O(2^n)[/math] памяти и имеет асимптотику [math]O(2^nn)[/math].

Реализация

Прежде чем писать код, скажем пару слов о порядке обхода состояний. Обозначим за [math]|mask|[/math] количество единиц в маске (иначе говоря количество пройденных вершин не считая текущей). Тогда, поскольку при рассмотрении состояния [math]\langle i, mask \rangle[/math] мы смотрим на состояния

[math]\langle j, mask - 2^j \rangle[/math], и [math]|mask| = |mask - 2^j| + 1[/math], то состояния с большим [math]|mask|[/math] должны быть посещены позже, чтобы к моменту вычисления текущего состояния были вычислены все те, которые используются для его подсчёта. Однако если использовать рекурсию, об этом можно не беспокоиться (и сэкономить немало кода, времени и памяти).

 //Все переменные используются из описания алгоритма, [math]\infty[/math] = бесконечность
 function findCheapest(i, mask):
   if d[i][mask] != [math]\infty[/math] 
     return d[i][mask] 
   for j = 0 .. n - 1
     if w(i, j) существует and j-ый бит mask == 1  
       d[i][mask] = min(d[i][mask], findCheapest(j, mask - 2 ** j) + w(i, j))
 return d[i][mask]
 
 for i = 0 .. n - 1
   for mask = 0 .. 2 ** n - 1
    d[i][mask] = [math]\infty[/math]
 d[0][0] = 0;
 ans = findCheapest(0, 2 ** n - 1)
 if ans == [math]\infty[/math]
   exit

Дальше ищем сам путь:

 i = 0
 mask = 2 ** n - 1
 path.push(0)
 while mask != 0
   for j = 0 .. n - 1
     if w(i, j) существует and j-ый бит mask == 1 and d[i][mask] == d[j][mask - 2 ** j] + w(i, j) 
       path.push(j)
       i = j
       mask = mask - 2 ** j
       continue

См. также

Источники информации

  • Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
  • Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4