Изменения

Перейти к: навигация, поиск

Задача нахождения объектов на изображении

24 байта добавлено, 19:38, 4 сентября 2022
м
rollbackEdits.php mass rollback
В задачах классификации с локализацией и детекции объектов для определения достоверности местоположения ограничивающей рамки в качестве метрики чаще всего используется отношение площадей ограничивающих рамок (англ. '''Intersection over Union'''):
$IoU = \frac{S(A \cup cap B)}{S(A \cap cup B)}$,
где $A$ и $B$ {{---}} предсказанная ограничивающая рамка и настоящиая ограничивающая рамка соответственно. $IoU$ равно нулю в случае непересекающихся ограничивающих рамок и равно единице в случае идеального наложения.
где $x$ {{---}} настоящая ограничивающая рамка, $c_i$ {{---}} центроид кластера. Количество ограничивающих рамок-центроидов выбирается при помощи "метода локтя" (англ. elbow method). Также в YOLOv2 используется предположение, что ограничивающиеся рамки не слишком отклоняются от местоположения центра, что обеспечивает стабильность на фоне менее эффективного равномерного выбора рамок-кандидатов по всему исходному изображению. YOLO9000, представленный в той же статье и названный согласно использованию 9000 лучших классов ImageNet, использует древовидную структуру классов, учитывая их вложенность. Например, если среди классов есть метка "Персидская кошка", это будет означать, что найденный объект будет подклассом метки "Кошка". Таким образом, не возникает взаимной исключительности классов, и softmax ко всем классам не применяется. Чтобы предсказать вероятность узла класса, мы можем следовать по пути от узла к корню:
$p($persian cat$|$object$) = p($persian cat$|$cat$) \cdot p($cat$|$animal$) \cdot p($animal$|$object$) \cdot p($object$)$
$p($object$)$ {{---}} вероятность обнаружения объекта, вычисленная на этапе генерации ограничительных рамок. Путь прогнозирования условной вероятности может остановиться на любом этапе, в зависимости от того, какие метки доступны.
YOLOv3<ref>[https://arxiv.org/abs/1804.02767 YOLOv3]</ref>, в свою очередь, является небольшим улучшением YOLOv2 {{---}} используется логистическая регрессия для оценок достоверностей ограничивающих рамок вместо суммы квадратов ошибок для условий классификации в YOLO и YOLOv2; использование нескольких независимых логистических классификаторов для каждого класса вместо одного слоя softmax; добавление межуровневых соединений между уровнями прогнозирования ограничивающих рамок; использование архитектур DarkNet и ResNet для свёрточных сетей.
[[Файл:SSD.png|300px|thumb|right|Архитектура нейронной сети для алгоритма SSD]]
Модель Single Shot Detector<ref>[https://arxiv.org/abs/1512.02325 Single Shot Detector]</ref> (SSD) использует идею использования пирамидальной иерархии выходов свёрточной сети для эффективного обнаружения объектов различных размеров. Изображение последовательно передаётся на слои свёрточной сети, которые уменьшаются в размерах. Выход из последнего слоя каждой размерности участвует в принятии решения по детекции объектов, таким образом, складывается "пирамидальная характеристика" изображения. Это позволяет обнаруживать объекты различных масштабов, так как размерность выходов первых слоёв сильно коррелирует с ограничивающими рамками для крупных маленьких объектов, а последних {{---}} для небольшихкрупных. В отличие от YOLO, SSD не разбивает изображение на сетку произвольного размера, а предсказывает смещение ключевых рамок. Ключевые рамки на разных уровнях масштабируются так, что одна размерность выходного слоя отвечает за объекты своего масштаба. В результате, большие объекты могут быть обнаружены только на более высоком уровне, а маленькие объекты {{---}} на низких уровнях. Как и в других алгоритмах, функция потерь обеспечивает совместный вклад как потерь локализации, так и потерь классификации.  
===Anchor boxes===
Anchor boxes {{- --}} алгоритм нахождения объектов, основанный на предсказании категории объекта и отступа от истинной ограничивающей рамки для большого количества сгенерированных ключевых рамок с последующей их фильтрацией.
====Генерация ключевых рамок====
1632
правки

Навигация