Изменения

Перейти к: навигация, поиск

Задача об ожерельях

80 байт добавлено, 19:42, 4 сентября 2022
м
rollbackEdits.php mass rollback
Если раскраски ожерелья одинаковые, то они принадлежат одной [[Орбита|орбите]], т.е. одна получается из другой некоторым преобразованием симметрии. Неподвижные точки поворота есть только у тождественного поворота и их <tex>n</tex> штук. Тогда, по [[Лемма Бёрнсайда и Теорема Пойа|лемме Бёрнсайда]], число орбит равняется <tex>\dfrac{n}{p}=\operatorname{gcd}(n,i)</tex>, где <tex>p</tex> минимальное число такое, что <tex>ip</tex> делится на <tex>n</tex>, и число их раскрасок <tex>N_i=k^{\operatorname{gcd}(n,i)}</tex>. Сумма же инвариантных раскрасок для всех поворотов: <tex>S=\sum\limits_{i=1}^{n}N_i=\sum\limits_{i=1}^{n}k^{\operatorname{gcd}(n,i)}</tex>. В последней сумме <tex>\varphi(n)</tex> слагаемых <tex>(\varphi(n)</tex> {{---}} [[Функция Эйлера|функция Эйлера]]<tex>)</tex>, для которых <tex>\operatorname{gcd}(n,i)=1</tex>. Если же <tex>\operatorname{gcd}(n,i)=q</tex>, то <tex>\operatorname{gcd}\left(\dfrac{n}{q},\dfrac{i}{q}\right)=1</tex>. Чтобы определить количество таких <tex>i</tex>, меньших <tex>n</tex>, нужно перебрать числа вида <tex>i=lq,\,0\leqslant l\leqslant \dfrac{n}{q}</tex> и проверять их на условие <tex>1=\operatorname{gcd}\left(\dfrac{n}{q},\dfrac{i}{q}\right)=\operatorname{gcd}\left(\dfrac{n}{q},l\right)</tex>. Таких чисел, очевидно, <tex>\varphi\left(\dfrac{n}{q}\right)</tex>(по определению <tex>\varphi(n)</tex>). Поэтому сумму можно заменить: <tex>S=\sum\limits_{i=1}^{n}k^{\operatorname{gcd}(n,i)}=\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q</tex>.
Тогда <tex>|C| =</tex> <tex> \dfrac{1} {n}</tex><tex>\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q</tex>.
== Алгоритм решения задачи про ожерелья с отражениями==
<tex> |G| = 2n</tex>. Первые <tex>n</tex> операций {{---}} повороты, и сумма количества их неподвижных точек, делённая на <tex>2n</tex>, принимает значение <tex>\dfrac{|C|} {2}</tex>, где <tex>|C|</tex> - количество ожерелий из <tex>n</tex> бусинок <tex>k</tex> различных цветов без отражений (задача выше) т.к. деление в задаче без отражений происходило на <tex>n</tex>, а здесь на <tex>2n</tex>. Следующие <tex>n</tex> операций {{---}} отражения. У каждой такой операции <tex>k^{\frac{n + 1}{2}}</tex> неподвижных точек. Поэтому сумма получается <tex>k^{\frac{n + 1}{2}}n</tex>.
<tex>|B| = \dfrac{|C|}{2} + \dfrac{1}{2n}k^{\dfrac{n + 1}{2}}n = \dfrac{|C|}{2} + \dfrac{1}{2}k^{\dfrac{n + 1}{2}} </tex><tex> = \dfrac{1} {2n}\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q + \dfrac{1}{2}k^{\dfrac{n + 1}{2}} </tex>
По Лемме Бёрнсайда:
<tex>|B| = \dfrac{|C|}{2} + \dfrac{1}{2n}\left(\dfrac{n}{2}k^{\dfracfrac{n}{2}} + \dfrac{n}{2}k^{\dfracfrac{n}{2} + 1}\right)</tex> <tex>= \dfrac{|C|}{2} + \dfrac{1}{4}k^{\dfracfrac{n}{2}}(k + 1) = \dfrac{1} {2n}\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q + \dfrac{1}{4}k^{\dfracfrac{n}{2}}(k+1)</tex>
== См. также ==
* [[Лемма Бёрнсайда и Теорема Пойа]]
* [[Функция Эйлера]]
 
== Примечания ==
<references/>
== Источники информации ==
* [http://e-maxx.ru/algo/necklace_colouring MAXimal::algo::Ожерелья]
== Примечания ==
<references/>
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Комбинаторика]]
[[Категория: Теория групп]]
1632
правки

Навигация