Изменения

Перейти к: навигация, поиск

Задача о динамической связности

5126 байт добавлено, 19:15, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Задача
|definition = Есть [[Основные_определения:_граф,_ребро,_вершина,_степень,_петля,_путь,_цикл#Неориентированные_графы|неориентированный граф]] из <tex>n</tex> вершин, изначально не содержащий рёбер. Требуется обработать <tex>m</tex> запросов трёх типов:
* <tex>\mathrm{add(u,v)}</tex> {{---}} добавить ребро между вершинами <tex>u</tex> и <tex>v</tex>,;* <tex>\mathrm{remove(u,v)}</tex> {{---}} удалить ребро между вершинами <tex>u</tex> и <tex>v</tex>,;* <tex>\mathrm{connected(u,v)}</tex> {{---}} проверить, лежат ли вершины <tex>u</tex> и <tex>v</tex> в одной компоненте связности.
}}
== Динамическая связность в лесах ==
Если задача такова, что в графе нет и не может быть циклов, то она сводится к задаче о связности в [[Деревья Эйлерова обхода|деревьях эйлерова обхода]]. Время работы каждого запроса для упрощённой задачи {{---}} <tex>O(\log n)</tex>, где <tex>n</tex> {{---}} количество вершин в графе.
== Алгоритм Обобщение задачи для произвольных графов ===== Построение дерева отрезков ===Рассмотрим массив запросов. Каждое ребро в графе существует на некотором отрезке запросов: начиная с запроса добавления и заканчивая запросом удаления (либо концом запросов, если ребро не было удалено). Для каждого ребра можно найти этот отрезок, пройдя по массиву запросов и запоминая, когда какое ребро было добавлено.
Пусть есть <tex>k</tex> рёберСуществуют задачи, <tex>i</tex>-е соединяет вершины <tex>v_i</tex> и <tex>u_i</tex>в которых граф не обязательно на протяжении нашей работы после каждой операции добавления ребра остаётся лесом. Для решения таких задач в каждой компоненте связности выделим [[Остовные деревья: определения, было добавлено запросом <tex>L_i</tex> и удалено запросом <tex>R_i</tex>лемма о безопасном ребре|остовные деревья]], которые образуют остовный лес.
Построим на массиве запросов [[Дерево отрезковФайл:Graph. Построениеjpg|дерево отрезков530px|thumb|left|Граф]], в каждой его вершине будем хранить список пар. <tex>i</tex>-е рёбро графа нужно добавить на отрезок <tex> [[L_i,R_i]</tex>Файл:Spanforest. Это делается аналогично тому, как jpg|530px|thumb|right|Остовный лес в дереве отрезков происходит добавление на отрезке (процесс описан в статье "[[Несогласованные поддеревья. Реализация массового обновленияграфе]]"), но без <tex>push</tex>: нужно спуститься по дереву от корня и записать пару <tex>u_i,v_i</tex> в вершины дерева отрезков.
Теперь чтобы узнать, какие рёбра существуют во время выполнения <tex>i</tex>-го запроса, достаточно посмотреть на путь от корня дерева отрезков до листа, который соответствует этому запросу {{---}} рёбра, записанные в вершинах этого пути, существуют во время выполнения запроса.
=== Ответы на запросы ===
Обойдём дерево отрезков в глубину, начиная с корня. Будем поддерживать граф, состоящий из рёбер, которые содержатся на пути от текущей вершины дерева отрезков до корня. При входе в вершину добавим в граф рёбра, записанные в этой вершине. При выходе из вершины нужно откатить граф к состоянию, которое было при входе. Когда мы добираемся до листа, в граф уже добавлены все рёбра, которые существуют во время выполнения соответствующего запроса, и только они. Поэтому если этот лист соответствует запросу третьего типа, его следует выполнить и сохранить ответ.
Для поддержания такого графа и ответа на запросы будем использовать [[СНМ (реализация с помощью леса корневых деревьев)|систему непересекающихся множеств]]. При добавлении рёбер в граф объединим соответствующие множества в СНМ. Откатывание состояния СНМ описано ниже.
=== СНМ с откатами ===
Для того, чтобы иметь возможность откатывать состояние СНМ, нужно при каждом изменении любого значения в СНМ записывать в специальный массив, что именно изменилось и какое было предыдущее значение. Это можно реализовать как массив пар (указатель, значение).
Чтобы откатить состояние СНМ, пройдём по этому массиву в обратном порядке и присвоим старые значения обратно. Для лучшего понимания ознакомьтесь с приведённой ниже реализацией.
Нужно заметить, что эвристику сжатия путей в этом случае применять не следует. Эта эвристика улучшает асимптотическое время работы, но это время работы не истинное, а амортизированное. Из-за наличия откатов к предыдущим состояниям эта эвристика не даст выигрыша. СНМ с ранговой эвристикой же работает за <tex>O(\log n)</tex> на запрос истинно.
Запоминание изменений и откаты не влияют на время работы, если оно истинное, а не амортизированное. Действительно: пусть в СНМ произошло <tex>r</tex> изменений. Каждое из них будет один раз занесено в массив и один раз отменено. Значит, запись в массив и откаты работают за <tex>\Theta(r)</tex>. Но и сами изменения заняли <tex>\Theta(r)</tex> времени, значит, откаты не увеличили асимптотическое время работы.
Вместо описанного способа откатывания состояния СНМ можно использовать [[Персистентные структуры данных|персистентный]] СНМ, но этот вариант сложнее и имеет меньшую эффективность.
<!-- если бы ещё псевдокод и что-то там ещё, я забыла -->
=== Частные случаи ===
# Деревья     ===Проверка связности===Граф и его остовный лес {{---}} одно и то же с точки зрения связности. Поэтому проверка связности в графе сводится к проверке связности в остовном лесе и решается за <tex>O(\log n)</tex>.<!--Добавление рёбер можно рассмотреть с точки зрения [[СНМ (реализация с помощью леса корневых деревьев)|системы непересекающихся множеств]], такой запрос будет работать за <tex>O(\log n)</tex>. Операция проверки сводится к проверке связности в остовном лесе и работает также за <tex>O(\log n)</tex>.--> ===Добавление ребра===Чтобы разобраться с тем, как изменится граф и остовный лес при добавлении и удалении ребра, введём функцию <tex>l(e):E{\rightarrow}[0;\log n]</tex> и назовём её ''уровнем ребра'' <tex>e</tex>. Для таких графов задачу Уровни ребра можно решать распределить любым способом, но для всех <tex> i </tex> должно выполняться следующее свойство: размер каждой компоненты связности <tex>G_i</tex> не превосходит <tex>\dfrac{n}{2^i}</tex>. Здесь графы <tex>G_i</tex> определяются так: <tex>G_i=\langle V, E\rangle: \{e \in E \mid l(e) \geqslant i\}</tex>. Очевидно, что <tex>G_{\log n} \subseteq G_{\log n-1} \subseteq \ldots \subseteq G_1 \subseteq G_0 = G</tex>. Выделим в графах остовные леса таким образом, что <tex>F_{\log n} \subseteq F_{\log n-1} \subseteq \ldots \subseteq F_1 \subseteq F_0</tex>, где <tex>F_i</tex> {{---}} остовный лес графа <tex>G_i</tex>. Удобнее всего новому ребру давать уровень <tex>0</tex>. В этом случае изменится только <tex>G_0</tex>, так как в остальные подграфы <tex>G_i</tex> рёбра нулевого уровня не входят. После вставки нового ребра нам нужно проверить, были ли вершины <tex>u</tex> и <tex>v</tex> в одной компоненте связности до того, как мы вставили ребро. Если они лежали в разных компонентах, то необходимо новое ребро добавить и в остовный лес <tex>F_0</tex>. ====Псевдокод==== '''function''' <tex>\mathrm{add}</tex>('''Node''' u, '''Node''' v): '''Edge''' e = <tex>\langle </tex>u, v<tex>\rangle</tex> e.level = 0 <tex>G_0</tex> = <tex>G_0</tex> <tex>\cup</tex> e<!---insert(<tex>G_0</tex>, e)--> '''if not''' <tex>\mathrm{connected(u,v)}</tex> <tex>F_0</tex> = <tex>F_0</tex> <tex>\cup</tex> e<!---insert(<tex>F_0</tex>, e)--> ===Удаление ребра==={{Утверждение|statement=Если ребро, которое мы хотим удалить, не принадлежит остовному лесу, то связность между любой парой вершин сохранится.|proof=Докажем от противного. Допустим, что это не так. Понятно, что при помощи разрезании ребра нового пути между вершинами не появится.Предположим, что нарушилась связность для каких-то двух вершин. Значит, мы убрали мост. А любой мост принадлежит всем остовным деревьям его компоненты. Противоречие.}}[[Деревья Эйлерова обходаФайл:Is_there_xy.jpg|деревьев эйлерова обхода200px|thumb|right|Компонента связности T.]] Таким образом, если мы удалили ребро не из остовного леса, то нам не придётся перестраивать лес и пересчитывать значение <tex>\mathrm{connected(u,v)}</tex>. Рассмотрим случаи, когда мы берём ребро из леса. Тогда необходимо выяснить, является ли данное ребро мостом в графе, и выполнить соответствующие действия. Проверим, является ли ребро мостом. У ребра <tex>uv</tex> известен уровень, пусть он равен <tex>i</tex>. Попробуем найти другое ребро (<tex>xy</tex>), соединяющее поддеревья <tex>T_u</tex> и <tex>T_v</tex>, на которые распалось остовное дерево исследуемой компоненты <tex>T</tex>. {{Утверждение|statement=Если ребро <tex>xy</tex> существует, то его уровень не больше <tex>i</tex>.|proof=От противного. Пусть <tex>l(xy)=j</tex>, где <tex>j > i</tex>. Тогда вершины <tex>x</tex> и <tex>y</tex> каким-то образом связаны в <tex>F_j</tex> (либо непосредственно ребром <tex>xy</tex>, либо каким-то другим путём). Но <tex>F_j \subseteq F_i</tex>. Значит, в <tex>F_i</tex> между <tex>x</tex> и <tex>y</tex> сохранился путь из рёбер уровня не меньше <tex>j</tex> и появился другой путь через <tex>uv</tex>. Приходим к противоречию, так как в <tex>F_i</tex> все компоненты должны быть деревьями.}} Чтобы найти <tex>xy</tex>, выберем из поддеревьев <tex>T_u</tex> и <tex>T_v</tex> наименьшее. Не умаляя общности, будем считать, что <tex>|T_u|\leqslant|T_v|</tex>. <!--ежу понятно--> Так как всегда из двух слагаемых можно выбрать одно такое, что оно не превосходит половины их суммы, имеем важное свойство: <tex>|T_u|\leqslant\dfrac{|T_u|+|T_v|}{2}=\dfrac{|T|}{2}</tex>. Также нам известно, что <tex>T \subseteq F_i</tex>, а значит, <tex>|T|\leqslant\dfrac{n}{2^i}</tex>. Отсюда <tex>|T_u|\leqslant\dfrac{n}{2^{i+1}}</tex>. Это неравенство позволит нам увеличивать уровни рёбер при необходимости. Будем искать ребро <tex>xy</tex> следующим образом:# Выбираем любое ребро уровня <tex>i</tex>, выходящее из вершины, принадлежащей <tex>T_u</tex>. Операции добавления # Если выбранное ребро ведёт в <tex>T_v</tex>, выходим из цикла и добавляем ребро <tex>xy</tex> в остовные леса <tex>F_i</tex>, для которых <tex>i\leqslant l(xy)</tex> и удаления выходим из цикла;# Если выбранное ребро ведёт в другую вершину поддерева <tex>T_u</tex>, увеличиваем его уровень на <tex>1</tex>;# Если есть непроверенные рёбра на интересующем нас уровне <tex>i</tex>, переходим к пункту <tex>1</tex>;# Если таких рёбер уровня <tex>i</tex> не осталось и <tex>i>0</tex>, рассматриваем уровень на единицу меньший и переходим к пункту <tex>1</tex>;# Если все рёбра просканированы и проверка <tex>i=0</tex>, то <tex>uv</tex> является мостом. '''Замечание.''' Увеличив уровень ребра на существование пути между вершинами работают единицу, нужно не забыть обновить <tex>G_{i+1}</tex> и <tex>F_{i+1}</tex>.====Оценка времени работы====Пункт <tex>2</tex> работает за <tex>O(\log^2 n)</tex>, так как после выхода из цикла мы добавляем ребро за <tex>O(\log n)</tex> на каждом уровне, а количество уровней не больше <tex>\log n</tex>.# Планарные графы<!--5 сек, тут кажись я права всё-таки, нужен Лёха--> Пусть до момента, когда мы нашли нужное ребро, мы сделали <tex>S</tex> неудачных сканирований. После каждого такого сканирования нам приходится добавлять новые рёбра в <tex>G_{i+1}</tex>, что стоит <tex>O(\log n)</tex>. Получаем сложность удаления одного ребра <tex>O(\log^2{n}+S\cdot\log n)</tex>. <!--- Возможно, мы удалим мост, но это уже другая история, да и она всяко лучше логарифмов в квадрате.. D. Eppstein доказал---> Выразим сложность одной операции <tex>\mathrm{remove}</tex> другим способом. Для <tex>n</tex> вершин и <tex>m</tex> вызовов процедуры сложность равна <tex>O(\log^2{n}\cdot m+\log n\cdot\displaystyle \sum_{i=1}^m S_i)</tex>, что не превосходит <tex>O(\log^2{n} \cdot m+\log n\cdot\log n\cdot m)</tex>, так как уровень ребра <tex>m</tex> раз рос максимум до <tex>\log n</tex>. Отсюда суммарная сложность всех запросов равна <tex>O(\log^2{n}\cdot m)</tex>, а для планарных графов одного запроса мы также можем выполнять запросы решаем задачу за <tex>O(\log ^2{n})</tex>. ====Псевдокод====  '''function''' <tex>\mathrm{remove}</tex>('''Node''' u, '''Node''' v): '''Edge''' e = <tex>\langle </tex>u, v<tex>\rangle</tex> '''for''' i = e.level '''downto''' 0 <tex>G_i</tex> = <tex>G_i\setminus</tex>e<!---delete(<tex>G_i</tex>, e)---> <tex>F_i</tex> = <tex>F_i\setminus</tex>e<!---delete(<tex>F_i</tex>, e)---> '''Edge''' e2 '''for''' e2 = <tex>\langle </tex>x, y<tex>\rangle</tex> : e2.level == i '''and''' x <tex>\in T_u</tex> '''if''' y <tex>\in T_v</tex> '''for''' j = i '''downto''' 0 <tex>F_j</tex> = <tex>F_j</tex> <tex>\cup</tex> e2<!---insert(<tex>F_i</tex>, e2)--> '''return''' '''else''' e2.level++ <tex>G_{i+1}</tex> = <tex>G_{i+1}</tex> <tex>\cup</tex> e2<!---insert(<tex>F_i</tex>, e2)-->
== См. также ==
* [[СНМ (реализация с помощью леса корневых деревьев)Деревья Эйлерова обхода|Система непересекающихся множеств]]* [[Дерево отрезков. Построение|Дерево отрезковДеревья эйлерова обхода]]
* [[Задача о динамической связности оффлайн]]
== Источники информации ==
* [http://se.math.spbu.ru/SE/diploma/2012/s/Kopeliovich_diploma.pdf http://se.math.spbu.ru/SE/diploma/2012/s/Kopeliovich_diploma.pdf]
* [https://en.wikipedia.org/wiki/Dynamic_connectivity Dynamic connectivity {{---}} Википедия]
* [http://coursesnumeralis.csail.mit.eduru/6.851algoritmyi-i-strukturyi-dannyih-poiska-dinamicheskaya-svyaznost-v-grafah-babenko-maksim/spring12/scribe/L20.pdf http://courses.csail.mit.edu/6.851/spring12/scribe/L20.pdfЛекции {{---}} Академия Яндекса]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Связность в графах]]
1632
правки

Навигация