Изменения

Перейти к: навигация, поиск
поменял разделы местами в алгоритме Хиршберга
hirschberg(x[mid + 1 .. x.size()], y[it_max + 1 .. y.size()])
=== Доказательство корректности=== Осталось понять, что алгоритм находит нужную подпоследовательность. Не теряя общности, будем считать, что <tex> lcs </tex> единственная, так как нам не важно какую из равных по длине подпоследовательностей выбирать. Тогда рассмотрим разделение на две части <tex>X</tex>, часть символов LCS (возможно нулевая) попадет в первую половину, оставшаяся — во вторую. Пусть <tex> x_i </tex> последний символ из LCS в первой половине, тогда наш алгоритм выберет соответствующий ему <tex> y_i </tex> в качестве точки разделения. То есть символы из <tex> y </tex>, которые связанысо второй половиной <tex> x </tex>, лежат правее <tex> y_i </tex>, в противном случае, либо <tex> y_i </tex> не состоит в паре с <tex> x_i </tex>, либо <tex> x_i </tex> не последний символ из <tex> lcs </tex> в первой половине. Заметим, что если первая половина не содержит <tex> lcs </tex>, то точки разбиения не будет, для симметричного случая со второй половиной точкой разбиения будет <tex> y_i </tex>, которая включается в первую половину. Таким образом, мы свели поиск исходной <tex> lcs </tex> к поиску двух независимых частей. Когда в <tex> X </tex> останется <tex>1</tex> символ, то возможны два варинта, либо он входит в <tex> lcs </tex>, либо нет, в чем мы убеждаемся линейным поиском, случай, когда последний <tex> x </tex> не входит в <tex> lcs </tex>, возникает из-за того, что на каком-то шаге, вся подпоследовательность оказалась в одной из половин <tex> X </tex>. === Асимптотика ===
Рассмотрим временные затраты алгоритма. Рекурсия представима в виде бинарного дерева высоты не более <tex> \log (m) </tex>, так как она основана на разделении первой последовательности на две равные части на каждом шаге алгоритма.
* Итоговая асимптотика алгоритма: <tex> O(mn) </tex>
 
Осталось понять, что алгоритм находит нужную подпоследовательность. Не теряя общности, будем считать, что <tex> lcs </tex> единственная, так как нам не важно какую из равных по длине подпоследовательностей выбирать. Тогда рассмотрим разделение на две части <tex>X</tex>,
часть символов LCS (возможно нулевая) попадет в первую половину, оставшаяся — во вторую. Пусть <tex> x_i </tex> последний символ из LCS в первой половине, тогда наш алгоритм выберет соответствующий ему <tex> y_i </tex> в качестве точки разделения. То есть символы из <tex> y </tex>, которые связаны
со второй половиной <tex> x </tex>, лежат правее <tex> y_i </tex>, в противном случае, либо <tex> y_i </tex> не состоит в паре с <tex> x_i </tex>, либо <tex> x_i </tex> не последний символ из <tex> lcs </tex> в первой половине. Заметим, что если первая половина не содержит <tex> lcs </tex>, то
точки разбиения не будет, для симметричного случая со второй половиной точкой разбиения будет <tex> y_i </tex>, которая включается в первую половину. Таким образом, мы свели поиск исходной <tex> lcs </tex> к поиску двух независимых частей. Когда в <tex> X </tex> останется <tex>1</tex> символ, то возможны два варинта, либо он входит в <tex> lcs </tex>, либо нет, в чем мы убеждаемся линейным поиском, случай, когда последний <tex> x </tex> не входит в <tex> lcs </tex>, возникает из-за того, что на каком-то шаге, вся подпоследовательность оказалась в одной из половин <tex> X </tex>.
 
=== Затраты на память ===
Проанализируем затраты на память. Три глобальные последовательности (две исходные и одна для ответа), к которым мы обращаемся внутри алгоритма, требуют <tex> m + n + \min (m, n) </tex> памяти. Дополнительно на каждом шаге рекурсии вызываются <tex>2</tex> функции <tex> LCS </tex>, которые суммарно требуют <tex> 4k_i </tex>, где <tex> k_i </tex> — длина части <tex> y </tex> в текущий момент, так как для нахождения <tex> LCS </tex> достаточно двух строк матрицы <tex> lcs </tex>. Вспомогательные массивы удаляются перед рекурсивным вызовом, таким образом, общие затраты равны сумме размеров массивов на одной глубине рекурсии, то есть:
* Итого: <tex dpi = "200">{n + m + \min(m, n) + 4n = O(n + m)}</tex>
 
== См. также ==
10
правок

Навигация