Задача о числе путей в ациклическом графе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Перебор всех возможных путей)
Строка 1: Строка 1:
 
'''Задача о числе путей в ациклическом графе''' - одна из классических задач на тему динамического программирования. В этой задаче нам дан ациклический граф <tex>G</tex> и две вершины <tex>s</tex> и <tex>t</tex>. Необходимо посчитать количество путей из вершины <tex>s</tex> в вершину <tex>t</tex> по рёбрам графа <tex>G</tex>.
 
'''Задача о числе путей в ациклическом графе''' - одна из классических задач на тему динамического программирования. В этой задаче нам дан ациклический граф <tex>G</tex> и две вершины <tex>s</tex> и <tex>t</tex>. Необходимо посчитать количество путей из вершины <tex>s</tex> в вершину <tex>t</tex> по рёбрам графа <tex>G</tex>.
 
Число таких путей может быть велико даже на небольших графах, поэтому перебор всех возможных вариантов займет много времени. Однако, данную задачу можно решить гораздо быстрее с помощью динамики.
 
  
 
== Решение задачи ==
 
== Решение задачи ==
Строка 7: Строка 5:
 
=== Перебор всех возможных путей ===
 
=== Перебор всех возможных путей ===
  
Небольшая модификация алгоритма [[Обход в глубину, цвета вершин|обхода в глубину]]. Запустим обход в глубину от вершины <tex>s</tex>. При каждом посещении вершины <tex>v</tex> проверим, не является ли она искомой вершиной <tex>t</tex>. Если это так, то ответ увеличивается на единицу и обход прекращается. В противном случае производится запуск обхода в глубину от всех вершин, ребра в которые выходят из <tex>v</tex>, причем он производится независимо от того, были ли эти вершины посещены ранее, или нет.
+
Небольшая модификация алгоритма [[Обход в глубину, цвета вершин|обхода в глубину]]. Запустим обход в глубину от вершины <tex>s</tex>. При каждом посещении вершины <tex>v</tex> проверим, не является ли она искомой вершиной <tex>t</tex>. Если это так, то ответ увеличивается на единицу и обход прекращается. В противном случае производится запуск обхода в глубину для всех вершин, в которые есть ребро из <tex>v</tex>, причем он производится независимо от того, были эти вершины посещены ранее, или нет.
  
 
Функция <tex>countPaths(s, t)</tex> принимает начальную вершину <tex>s</tex> и конечную вершину <tex>t</tex>. В глобальной переменной <tex>answer</tex> содержится ответ.
 
Функция <tex>countPaths(s, t)</tex> принимает начальную вершину <tex>s</tex> и конечную вершину <tex>t</tex>. В глобальной переменной <tex>answer</tex> содержится ответ.
Строка 32: Строка 30:
 
=== Метод динамического программирования ===
 
=== Метод динамического программирования ===
  
Пусть <tex>P(v)</tex> - количество путей до вершины <tex>v</tex>.
+
Пусть <tex>P(v)</tex> - количество путей от вершины <tex> s </tex> до вершины <tex> v </tex>.
Можно заметить, что <tex>P(v)</tex> зависит только от вершин, ребра из которых входят в <tex>v</tex>. Тогда <tex>P(v) = \sum\limits_{c}P(c)</tex> таких <tex>c</tex>, что <tex>\exists</tex> ребро из <tex>c</tex> в <tex>v</tex>. Мы свели нашу задачу к более мелким подзадачам, причем мы также знаем, что <tex>P(s) = 1</tex>. Это позволяет решить задачу методом динамического программирования.
+
Тогда <tex>P(v)</tex> зависит только от вершин, ребра из которых входят в <tex>v</tex>. Тогда <tex>P(v) = \sum\limits_{c}P(c)</tex> таких <tex>c</tex>, что есть ребро из <tex>c</tex> в <tex>v</tex>. Мы свели нашу задачу к меньшим подзадачам, причем мы также знаем, что <tex>P(s) = 1</tex>. Это позволяет решить задачу методом динамического программирования.
  
 
=== Псевдокод ===
 
=== Псевдокод ===
  
Пусть <tex>s</tex> - стартовая вершина, а <tex>t</tex> - конечная, для нее и посчитаем ответ. Будем поддерживать массив <tex>d</tex>, где <tex>d[v]</tex> - количество путей до вершины <tex>v</tex> и массив <tex>w</tex>, где <tex>w[v] = true</tex>, если ответ для вершины <tex>v</tex> уже посчитан, и <tex>w[v] = false</tex> в противном случае. Изначально <tex>w[i] = false</tex> для всех вершин <tex>i</tex>, кроме <tex>s</tex>, а <tex>d[s] = 1</tex>. Функция <tex>count(v)</tex> будет возвращать ответ для вершины <tex>v</tex>. Удобнее всего это реализовать с помощью ленивой рекурсии, тогда значения массива <tex>d</tex> будут вычисляться по мере необходимости, а засчет запоминания результатов они не будут считаться лишний раз:  
+
Пусть <tex>s</tex> - стартовая вершина, а <tex>t</tex> - конечная, для нее и посчитаем ответ. Будем поддерживать массив <tex>d</tex>, где <tex>d[v]</tex> - количество путей из вершины <tex> s </tex> до вершины <tex>v</tex> и массив <tex>w</tex>, где <tex>w[v] = true</tex>, если ответ для вершины <tex>v</tex> уже посчитан, и <tex>w[v] = false</tex> в противном случае. Изначально <tex>w[i] = false</tex> для всех вершин <tex>i</tex>, кроме <tex>s</tex>, а <tex>d[s] = 1</tex>. Функция <tex>count(v)</tex> будет возвращать ответ для вершины <tex>v</tex>. Удобнее всего это реализовать в виде рекурсивной функции с запоминанием. В этом случае значения массива <tex>d</tex> будут вычисляться по мере необходимости и не будут считаться лишний раз:  
  
 
<tex> count(v) = \left \{  
 
<tex> count(v) = \left \{  

Версия 15:40, 30 декабря 2013

Задача о числе путей в ациклическом графе - одна из классических задач на тему динамического программирования. В этой задаче нам дан ациклический граф [math]G[/math] и две вершины [math]s[/math] и [math]t[/math]. Необходимо посчитать количество путей из вершины [math]s[/math] в вершину [math]t[/math] по рёбрам графа [math]G[/math].

Решение задачи

Перебор всех возможных путей

Небольшая модификация алгоритма обхода в глубину. Запустим обход в глубину от вершины [math]s[/math]. При каждом посещении вершины [math]v[/math] проверим, не является ли она искомой вершиной [math]t[/math]. Если это так, то ответ увеличивается на единицу и обход прекращается. В противном случае производится запуск обхода в глубину для всех вершин, в которые есть ребро из [math]v[/math], причем он производится независимо от того, были эти вершины посещены ранее, или нет.

Функция [math]countPaths(s, t)[/math] принимает начальную вершину [math]s[/math] и конечную вершину [math]t[/math]. В глобальной переменной [math]answer[/math] содержится ответ.

answer = 0

count(v)
    if v == t
        answer += 1
    else
        for(всех [math]to[/math] смежных с [math]v[/math])
            count(to)

countPaths(s, t)
    answer = 0
    count(s)
    return answer

Время работы данного алгоритма в худшем случае [math]O(Ans)[/math], где [math]Ans[/math] - количество путей в графе из [math]s[/math] в [math]t[/math].

Метод динамического программирования

Пусть [math]P(v)[/math] - количество путей от вершины [math] s [/math] до вершины [math] v [/math]. Тогда [math]P(v)[/math] зависит только от вершин, ребра из которых входят в [math]v[/math]. Тогда [math]P(v) = \sum\limits_{c}P(c)[/math] таких [math]c[/math], что есть ребро из [math]c[/math] в [math]v[/math]. Мы свели нашу задачу к меньшим подзадачам, причем мы также знаем, что [math]P(s) = 1[/math]. Это позволяет решить задачу методом динамического программирования.

Псевдокод

Пусть [math]s[/math] - стартовая вершина, а [math]t[/math] - конечная, для нее и посчитаем ответ. Будем поддерживать массив [math]d[/math], где [math]d[v][/math] - количество путей из вершины [math] s [/math] до вершины [math]v[/math] и массив [math]w[/math], где [math]w[v] = true[/math], если ответ для вершины [math]v[/math] уже посчитан, и [math]w[v] = false[/math] в противном случае. Изначально [math]w[i] = false[/math] для всех вершин [math]i[/math], кроме [math]s[/math], а [math]d[s] = 1[/math]. Функция [math]count(v)[/math] будет возвращать ответ для вершины [math]v[/math]. Удобнее всего это реализовать в виде рекурсивной функции с запоминанием. В этом случае значения массива [math]d[/math] будут вычисляться по мере необходимости и не будут считаться лишний раз:

[math] count(v) = \left \{ \begin{array}{ll} d[v], & w[v]=true \\ \sum\limits_{c}count(c), & w[v]=false \end{array} \right. [/math]

count(v)
    if w[v]
        return d[v]
    else
        sum = 0
        for(всех [math]c[/math] смежных с [math]v[/math])
            sum += count(c)
        d[v] = sum
        w[v] = true
        return sum

countPaths(s, t)
    d[s] = 1
    w[s] = true
    answer = count(t)
    return answer

Значение функции [math]count(v)[/math] считается для каждой вершины один раз, а внутри нее рассматриваются все такие ребра [math]\{e\ |\ end(e) = v\}[/math]. Всего таких ребер для всех вершин в графе [math]O(E)[/math], следовательно, время работы алгоритма в худшем случае оценивается как [math]O(V+E)[/math], где [math]V[/math] - количество вершин графа, [math]E[/math] - количество ребер.

Пример работы

Рассмотрим пример работы алгоритма на следующем графе:

Count-path-graph-example.png

Изначально массивы [math]d[/math] и [math]w[/math] инициализированы следующим образом:

вершина S 1 2 3 4 T
w true false false false false false
d 1 0 0 0 0 0

Сначала функция [math]count[/math] будет вызвана от вершины [math]T[/math]. Ответ для нее еще не посчитан ([math]w[T] = false[/math]), следовательно [math]count[/math] будет вызвана от вершин [math]3[/math] и [math]4[/math]. Для вершины [math]3[/math] ответ также не посчитан ([math]w[3] = false[/math]), следовательно [math]count[/math] будет вызвана уже для вершин [math]2[/math] и [math]S[/math]. А вот для них ответ мы уже можем узнать: для [math]2[/math] он равен [math]d[S][/math], так как это [math]S[/math] - единствнная вершина, ребро из которой входит в нее. Непосредственно для [math]S[/math] ответ нам также известен. На текущий момент таблица будет выглядеть следующим образом:

вершина S 1 2 3 4 T
w true false true false false false
d 1 0 1 0 0 0

Теперь мы знаем значения для вершин [math]2[/math] и [math]S[/math], что позволяет вычислить [math]d[3] = d[2] + d[S] = 2[/math]. Также обновим значения в массиве [math]w[/math]: [math]w[3] = true[/math].

вершина S 1 2 3 4 T
w true false true true false false
d 1 0 1 2 0 0

В самом начале для вычисления [math]d[T][/math] нам требовались значения [math]d[3][/math] и [math]d[4][/math]. Теперь нам известно значение [math]d[3][/math], поэтому проследим за тем, как будет вычисляться [math]d[4][/math]. [math]d[4] = count(3) + count(2) + count(1)[/math], но [math]w[3] = true, w[2] = true[/math], следовательно значения [math]d[3][/math] и [math]d[2][/math] мы уже знаем, и нам необходимо вызвать [math]count(1)[/math]. Ответ для этой вершины равен [math]d[S][/math], так как это единственная вершина, ребро из которой входит в [math]1[/math]. Обновим соответствующие значения массивов [math]d[/math] и [math]w[/math]:

вершина S 1 2 3 4 T
w true true true true false false
d 1 1 1 2 0 0

Теперь нам известны все три значения, требующиеся для вычисления ответа для вершины [math]4[/math]. [math]d[4] = d[3] + d[2] + d[1] = 2 + 1 + 1 = 4[/math]:

вершина S 1 2 3 4 T
w true true true true true false
d 1 1 1 2 4 0

Наконец, вычислим [math]d[T] = d[3] + d[4] = 2 + 4 = 6[/math] и обновим таблицы [math]d[/math] и[math]w[/math]:

вершина S 1 2 3 4 T
w true true true true true true
d 1 1 1 2 4 6

Этот алгоритм позволяет вычислить количество путей от какой-либо вершины [math]S[/math] не только до [math]T[/math], но и для любой вершины, лежащей на любом из путей от [math]S[/math] до [math]T[/math]. Для этого достаточно взять значение в соответствующей ячейке [math]d[/math].