Изменения

Перейти к: навигация, поиск

Избыточное кодирование, код Хэмминга

1052 байта добавлено, 19:17, 29 октября 2015
м
Кодирование Хэмминга: Исправлена опечатка в примере с таблицей
'''Избыточное кодирование''' (англ. ''redundant encoding'') {{- --}} вид кодирования, использующий избыточное количество информации с целью последующего контроля целостности данных при записи/воспроизведении информации или при её передаче по линиям связи.
== Код, определяющий одну ошибку ==
Увеличив объем кода на <tex>1 </tex> бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит <tex>x</tex>: <tex>0110..10x</tex>, такой, чтобы сумма всех единиц была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера.
== Кодирование Хэмминга ==
Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления.
Рассмотрим простой пример <tex>{{---</tex> }} закодируем четыре бита: <tex>a, b, c, d</tex>. Полученный код будет иметь длину <tex>8 </tex> бит и выглядеть следующим образом: <tex>a,b,c,d, a \oplus b, c \oplus d, a \oplus c, b \oplus d.</tex>
Рассмотрим табличную визуализацию кода:
{| class="wikitable" style="width:10cm" border=1|-align="1center" bgcolor=#F0F0F0! <tex>a</tex> || <tex>b</tex> ||style="background:#FFF"| <texbgcolor=#FFF>a \oplus b</tex>|-align="center" bgcolor=#F0F0F0! <tex>c</tex> || <tex>d</tex> ||style="background:#FFF"| <tex>c \oplus d</tex>|-align="center" bgcolor=#FFF! |<tex>a \oplus c</tex> || <tex>b \oplus d</tex>
|}
Как видно из таблицы, даже если один из битов <tex>a, b, c, d</tex> передался с ошибкой, содержащие его <tex>xor</tex>-суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит.Если один из битов <tex>a \oplus b, a \oplus c, b \oplus d, c\oplus d</tex> передался с ошибкой, то не сойдется только одна сумма и очевидно, что можно легко определить, какой бит неверный
По аналогичному принципу можно закодировать любое число бит. Пусть мы имеем исходную строку длиной в <tex>2^k</tex> бит. Для получения её кода добавим к ней <tex>k</tex> пар бит по следующему принципу:
...
*<tex>k</tex>-тая пара: сумма тех бит, в чьем номере <tex>k</tex>-тый бит с конца ноль и сумма тех бит, в чьем номере <tex>k</tex>-тый бит с конца единица<br>
[[Файл:Ham2Ham3.pngjpg|1000px|thumb|left|Соответствие добавленной информации исходным битам. Первый вариант кодирования соответствует использованию битов, раскрашенных в тёмные и светлые цвета, оптимизация — в тёмные цвета и серый]]
Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных <tex>k</tex> пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар <tex>k</tex>, следовательно мы имеем <tex>k</tex> бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит <tex>2^k</tex>.
                                   Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных <tex>k</tex> пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар <tex>k</tex>, следовательно мы имеем <tex>k</tex> бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит <tex>2^k+2k</tex>. Теперь заметим, что в случае наличия ошибки в исходной строке, ровно один бит в каждой паре будет равен единице. Тогда можно оставить только один бит из пары. Однако этого будет недостаточно, поскольку если только один добавленный бит не соответствует строке, то нельзя понять, ошибка в нём или в строке. На этот случай можно добавить ещё один контрольный бит {{--- }} <tex>xor\mathrm X \mathrm O \mathrm R</tex> всех битов строки.
Итого, увеличивая код длиной <tex>n</tex> на <tex>\log_2 n + 1</tex>, можно обнаружить и исправить одну ошибку.
Пусть <tex>\Sigma</tex> &mdash; исходный алфавит, <tex>C: \Sigma \to B^m</tex> &mdash; кодирование, <tex>B=(0,1)</tex>
<tex>d: B^m,\times B^m \to \mathbb{R^+}</tex> &mdash; [[Расстояние расстояние Хэмминга]] между двумя кодами. <br>
Определим <tex>d_0 = \min</tex> <math>~d(c(x),c(y))</math>, <tex>x,y \in \Sigma</tex>, <tex>x \ne y</tex>
Тогда легко понять, что код, полученный преобразованием <tex>C</tex> может исправлять <math>~[</math><texdpi = 150> {d_0-1}\over{2}</tex><math>~]</math> и обнаруживать <tex>[d_0-1]</tex> ошибок. Действительно, при любом натуральном количестве допустимых ошибок <tex>r</tex> любой код <tex>S</tex> образует вокруг себя проколотый шар таких строк <tex>S_i</tex>, что <tex>0<d(S,S_i)\le leqslant r</tex>. Если этот шар не содержит других кодов (что выполняется при <tex>r<d_0</tex>) , то можно утверждать, что если в него попадает строка, то она ошибочна. Аналогично можно утверждать, что если шары всех кодов не пересекаются (что выполняется при <texdpi = 150>r\le leqslant {{d_0-1}\over{2}} </tex>), то попавшую в шар строку <tex>S_i</tex> можно считать ошибочной и тождественно исправить на центр шара &mdash; строку <tex>S</tex>.<br>[[Файл:Ham.png|350px]]
== Ссылки Источники информации ==*[http://en.wikipedia.org/wiki/Hamming_code Wikipedia {{---}} Hamming code - Wikipedia, the free encyclopedia]
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Алгоритмы сжатия ]]
21
правка

Навигация