Избыточное кодирование, код Хэмминга — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 27: Строка 27:
  
 
Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных <tex>k</tex> пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар <tex>k</tex>, следовательно мы имеем <tex>k</tex> бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит <tex>2^k</tex>.
 
Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных <tex>k</tex> пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар <tex>k</tex>, следовательно мы имеем <tex>k</tex> бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит <tex>2^k</tex>.
 +
 +
Итого, увеличивая код длиной <tex>n</tex> на <tex>\log_2 n</tex>, можно обнаружить и исправить одну ошибку.

Версия 02:58, 31 октября 2010

Эта статья находится в разработке!

Избыточное кодирование - вид кодирования, использующий избыточное количество информации с целью последующего контроля целостности данных при записи/воспроизведении информации или при её передаче по линиям связи.

Код, определяющий одну ошибку

Увеличив объем кода на 1 бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит x: [math]0110..10x[/math], такой, чтобы сумма всех единиц была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера.

Кодирование Хэмминга

Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления. Рассмотрим простой пример [math]-[/math] закодируем четыре бита: [math]a, b, c, d[/math]. Полученный код будет иметь длину 8 бит и выглядеть следующим образом: [math]a,b,c,d, a \oplus b, c \oplus d, a \oplus c, b \oplus d.[/math] Рассмотрим табличную визуализацию кода:

[math]a[/math] [math]b[/math] [math]a \oplus b[/math]
[math]c[/math] [math]d[/math] [math]c \oplus d[/math]
[math]a \oplus c[/math] [math]b \oplus d[/math]

Как видно из таблицы, даже если один из битов [math]a, b, c, d[/math] передался с ошибкой, содержащие его [math]xor[/math]-суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит.

По аналогичному принципу можно закодировать любое число бит. Пусть мы имеем исходную строку длиной в [math]2^k[/math] бит. Для получения её кода добавим к ней [math]k[/math] пар бит по следующему принципу:

  • Первая пара: сумма четных бит и сумма нечетных бит
  • Вторая пара: сумма тех бит, в чьем номере второй бит с конца ноль и сумма тех бит, в чьем номере второй бит с конца единица

...

  • [math]K[/math]-тая пара: сумма тех бит, в чьем номере [math]k[/math]-тый бит с конца ноль и сумма тех бит, в чьем номере [math]k[/math]-тый бит с конца единица

Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных [math]k[/math] пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар [math]k[/math], следовательно мы имеем [math]k[/math] бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит [math]2^k[/math].

Итого, увеличивая код длиной [math]n[/math] на [math]\log_2 n[/math], можно обнаружить и исправить одну ошибку.