Изменения

Перейти к: навигация, поиск

Инициализация параметров глубокой сети

2626 байт добавлено, 21:39, 19 мая 2022
правка экспоненциального роста
Рассмотрим линейное преобразование:
*<tex>y=w^Tx+b=\sum(w_i x_i)+b=\sum(y_i)+b</tex>
Его Примем значение вектора смещения $b$ нулевым, тогда дисперсия линейного преобразования (считаем настраиваемые параметры и входные данные независимыми):
*<tex>\mathrm{Var}[y_i]=\mathrm{Var}[w_i x_i]=\mathbb{E}[x_i]^2\mathrm{Var}[w_i]+\mathbb{E}[w_i]^2\mathrm{Var}[x_i]+\mathrm{Var}[w_i]\mathrm{Var}[x_i]</tex> ([https://en.wikipedia.org/wiki/Variance#Product_of_independent_variables см. дисперсия произведения])
Если отнормировать входные данные и Так как мы сами выбираем параметры распределения, то мы их можем подобрать параметрытак, чтобы $\mathbb{E}[w_i]=0$ (для всех слоев). Также можно добиться того, чтобы среднее было нулевымдля первого слоя $\mathbb{E}[x_i]=0$, если данные будут центрироваться в ходе нормализации, получитсятогда:
*<tex>(\mathbb{E}[x_i]=0, \mathbb{E}[w_i]=0) \Rightarrow \mathrm{Var}[y_i]=\mathrm{Var}[w_i]\mathrm{Var}[x_i]</tex>
Предыдущее предположение верно для первого слоя. Не трудно показать, что для всех следующих слоев оно тоже будет верно, если использовать симметричную функцию активации, которая будет сохранять нулевое математическое ожидание. Пусть $x=f(y_{prev})$, где $f$ это симметричная функция активации, а $y_{prev}=w_{prev}^T x_{prev}$ (предыдущее представление). Покажем что $\mathbb{E}[x]=0$:
*<tex>\mathbb{E}[y_{prev_{i}}]=\mathbb{E}[w_{prev_{i}} x_{prev_{i}}]=\mathbb{E}[w_{prev_{i}}] \mathbb{E}[x_{prev_{i}}]=0</tex><br>Мы можем расписать математическое ожидание произведения, как произведение мат. ожиданий, поскольку $w$ и $x$ независимы.<br><tex>\Rightarrow \mathbb{E}[y_{prev}]=\mathbb{E}[\sum\limits_{i=1}^{n_{in}}[y_{prev_{i}}]]=\sum\limits_{i=1}^{n_{in}}(\mathbb{E}[y_{prev_{i}}])=0</tex><br><tex>\Rightarrow \mathbb{E}[x]=\mathbb{E}[f(y_{prev})]=0</tex><br>Поскольку $f$ симметрична.
Поскольку $x_i$ мы отнормировали, а $w_i$ из одного распределения, то все дисперсии одинаковые:
*<tex>\mathrm{Var}[y]=\mathrm{Var}[\sum\limits_{i=1}^{n_{in}}[y_i]]=\sum\limits_{i=1}^{n_{in}}\mathrm{Var}[w_i x_i]=n_{in} \mathrm{Var}[w_i]\mathrm{Var}[x_i]</tex>
Отсюда видно, что дисперсия результата линейно зависит от дисперсии входных данных с коэффициентом $n_{in} \mathrm{Var}[w_i]$, поэтому если инициализировать параметры так, что $\mathrm{Var}[w_i]=\frac{1}{n_{in}}$, то наша дисперсия будет равна $\mathrm{Var}[x_i]$.
*Если коэффициент будет $>1$ это приведет к увеличению дисперсии с каждым новым преобразованием, что может привести к ошибкам или насыщению функции активации, что негативно скажется на обучении сети.
*Если коэффициент будет $<1$ это приведет к снижению дисперсии с каждым новым преобразованием с около нулевым промежуточным представлением, что тоже негативно скажется на обучении сети.
Если бы мы не использовали между слоями функцию активации, то дисперсия на последнем слое совпадала бы с дисперсией при инициализации входных данных, но использовать глубокую сеть без функции активации не имеет смысла, потому что она добавляет нелинейность нашей модели, чтобы выявлять более сложные закономерности. Поэтому, если мы будем использовать симметричную функцию активации, дисперсия на первом слое и на последнем все еще будет отличаться, но коэффициент $n_{in} \mathrm{Var}[w_i]$ уже не будет вносить вклад в дисперсию. Поэтому для начальной инициализации параметров стоит использовать такое распределение, что $\mathrm{Var}[w_i]=\frac{1}{n_{in}}$, которое позволит сохранить дисперсию входных данныхконтролировать изменение дисперсии.
===Метод инициализации Xavier<ref>[http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf Understanding the difficulty of training deep feedforward neural networks]</ref>===
Поэтому мы будем пытаться контролировать дисперсию не между слоями, а между входами ReLU. Пусть представление на входе было получено после применения данной функции активации к предыдущему представлению $y_{prev}$:
*<tex>x=\mathrm{ReLU}(y_{prev})</tex>
Давайте покажем, что $\mathbb{E}[y_{prev}]=0$, так как $w_{prev_{i}}$ и $x_{prev_{i}}$ независимы:. Доказательство было в главе про инициализацию случайными числами.*<tex>\mathbb{E}[y_{prev_{i}}]=\mathbb{E}[w_{prev_{i}} x_{prev_{i}}]=\mathbb{E}[w_{prev_{i}}] \mathbb{E}[x_{prev_{i}}]=0</tex><br><tex>\Rightarrow \mathbb{E}[y_{prev}]=\mathbb{E}[\sum\limits_{i=1}^{n_{in}}[y_{prev_{i}}]]=\sum\limits_{i=1}^{n_{in}}(\mathbb{E}[y_{prev_{i}}])=0</tex>
Также $y_{prev_i}$ распределены симметрично относительно нуля:
*<tex>\mathbb{P}(y_{prev_i}>0)=\mathbb{P}(w_{prev_{i}} x_{prev_{i}}>0)</tex><br><tex>=\mathbb{P}((w_{prev_{i}}>0 \wedge x_{prev_{i}}>0) \vee ((w_{prev_{i}}<0 \wedge x_{prev_{i}}<0)))</tex><br><tex>=\mathbb{P}(w_{prev_{i}}>0)\mathbb{P}(x_{prev_{i}}>0)+\mathbb{P}(w_{prev_{i}}<0)\mathbb{P}(x_{prev_{i}}<0)</tex><br><tex>=\frac{1}{2}\mathbb{P}(x_{prev_{i}}>0)+\frac{1}{2}\mathbb{P}(x_{prev_{i}}<0)=\frac{1}{2}</tex>
Анонимный участник

Навигация