Изменения

Перейти к: навигация, поиск

Интеграл Фейера

221 байт добавлено, 19:33, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{В разработке}}[[Интеграл Дирихле|<<]][[Наилучшее приближение в линейных нормированных пространствах|>>]]
{{Определение
}}
Пользуясь определением, запишем <tex>\sigma_n(f,x)=\int\limits_{Q}f(x+t)\Phi_n(t)dt</tex>, что принято называть '''интегралом Фейера'''. Так как ядро Дирихле четное, то по формуле, ядро Фейера тоже четное. Заинтегрируем по <tex>Q</tex> ядро Фейера: <tex>\int\limits_{Q}\Phi_n(t)dt=\frac{1}{n+1}\sum\limits_{k=0}^{n}\int\limits_{Q}D_k(t)dt = 1</tex>, то есть ядро Фейера нормированно <tex>1</tex>. Поступая аналогично ядру Дирихле, можно придти к выводу <tex>\sigma_n(f,x)-S = \int\limits_{0}^{\pi}(f(x+t)-+f(x-t)-2S)\Phi_n(t)dt</tex> {{---}} основная формула для исследования сходимости сумм Фейера в индивидуальной точке <tex>x</tex>. Найдем замкнутое выражение для ядра Фейера.
{{Утверждение
Разобьем интеграл на две части, <tex> \int\limits_{0}^{\frac{\pi}{2}} = \int\limits_{0}^{\frac{\pi}{2n+1}} + \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} </tex>:
<tex> \int\limits_{0}^{\frac{\pi}{2n+1}} \frac {|\sin (2n+ 1)t|}{t} dt \le \int\limits_{0}^{\frac{\pi}{2n+1}} \frac {(2n + 1) |\sin t|}{t} dt \le \int\limits_{0}^{\frac{\pi}{2n+1}} \frac {(2n+1) t}{t} dt \le \int\limits_{0}^{\frac{\pi}{2n+1}} (2n+1) dt</tex> <tex> \le const </tex>.
Оценка сверху: <tex> \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{t} dt \le \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {1}{t} dt = \ln t \bigg|_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \sim \ln n </tex>.
Оценка снизу: <tex> \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{t} dt \ge \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {\sin^2 (2n+ 1)t}{t} dt = \frac12 \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac{dt}{t} - \frac12 \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {\cos (4n+ 2)t}{t} dt</tex>. Здесь <tex> \frac12 \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {1}{t} dt \sim \ln n </tex>. (, а<tex> \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {\cos (4n+ 2)t}{t} dt \underset{u = (2n + 1)t}{=} \int\limits_{\pi}^{\frac{(2n + 1)\pi}{2}} \frac {\cos 2u}{u} du \xrightarrow[n \to \infty]{} const </tex> как интеграл по типу Дирихле. Не путать с интегралом Дирихле из прошлого параграфа(см. Смотри раздел [[Несобственные_интегралы#Dirichlet|несобственные интегралы из первого семестра]]). )
Отсюда получаем требуемое.
Именно с этим фактом связана трудность исследования рядов Фурье в индивидуальной точке, в отличии от сумм Фейера, где ядро положительно и условия сходимости выписываются проще.
Поясним смысл сумм Фейера: в свое время, рассматривая числовые ряды, мы говорили, что <tex>\sum\limits_{k=1}^{\infty}a_k = \lim\limits_{n \to \infty}S_n</tex>, где <tex>S_n=\sum\limits_{k=1}^{n}a_k</tex>. Для расходящихся рядов можно применять обобщенные методы суммирования, главное, чтобы выполнялись [[Суммирование_расходящихся_рядов#правила суммирования|свойства перманентности и эффективности]]. К примеру, если <tex>\sigma_n=\frac{1}{n+1}\sum\limits_{k=10}^{\inftyn}S_k \to S</tex>, то <tex>\sum\limits_{k=1}^{\infty}a_k = S</tex> по методу средних арифметических.
В точно таком же смысле, если взять ряд Фурье: <tex>\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos{nx}+b_n\sin{nx})=\lim\limits_{n \to \infty}S_n(f,x)=\lim\limits_{n \to \infty}\sigma_n(f,x)</tex>(с.а.). В этом и состоит смысл введения сумм Фейера.
 
[[Интеграл Дирихле|<<]][[Наилучшее приближение в линейных нормированных пространствах|>>]]
 
[[Категория:Математический анализ 2 курс]]
1632
правки

Навигация