Редактирование: Интегрирование/дифференцирование производящих функций

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 41: Строка 41:
 
Умножая функцию <tex> f </tex> на <tex> s^2 </tex> и дифференцируя, получаем
 
Умножая функцию <tex> f </tex> на <tex> s^2 </tex> и дифференцируя, получаем
  
:<tex>(s^2 f(s))' = s + \dfrac{1}{2} s^2 + \dfrac{1}{3} s^3 + \dots = \ln \dfrac{1}{1 -
+
:<tex>(s^2 f(s))' = s + \dfrac{1}{2} s^2 + \dfrac{1}{3} s^3 + \dots = \ln(1 -
  s}</tex>,
+
  s)^{-1}</tex>,
  
 
откуда
 
откуда
  
:<tex> f(s) = s^{-2} \int\limits \ln \dfrac{1}{1 - s} = s^{-1} ((s - 1) \ln \dfrac{1}{1 - s} + s) </tex>.
+
:<tex> f(s) = s^{-2} \int\limits \ln (1 - s)^{-1} = s^{-1} ((s - 1) \ln (1 - s)^{-1} + s) </tex>.
  
 
===Пример <tex>2</tex>===
 
===Пример <tex>2</tex>===

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)