Редактирование: Интегрирование/дифференцирование производящих функций

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 20: Строка 20:
 
Операция же интегрирования производной приводит к функции с нулевым свободным членом, и поэтому результат, вообще говоря, отличается от исходной функции.
 
Операция же интегрирования производной приводит к функции с нулевым свободным членом, и поэтому результат, вообще говоря, отличается от исходной функции.
  
:<tex> \int\limits A'(s) = A(s) - a_0</tex>.
+
:<tex> \int\limits A'(s) = A(s) - A(s) </tex>
  
 
===Замечание===
 
===Замечание===
Строка 33: Строка 33:
 
==Примеры==
 
==Примеры==
  
===Пример <tex>1</tex>===
+
===Пример 1===
  
 
Последнее замечание позволяет подсчитывать (т. е. выражать в терминах элементарных) производящие функции для большого числа разнообразных последовательностей. Вычислим, например, производящую функцию
 
Последнее замечание позволяет подсчитывать (т. е. выражать в терминах элементарных) производящие функции для большого числа разнообразных последовательностей. Вычислим, например, производящую функцию
Строка 48: Строка 48:
 
:<tex> f(s) = s^{-2} \int\limits \ln \dfrac{1}{1 - s} = s^{-1} ((s - 1) \ln \dfrac{1}{1 - s} + s) </tex>.
 
:<tex> f(s) = s^{-2} \int\limits \ln \dfrac{1}{1 - s} = s^{-1} ((s - 1) \ln \dfrac{1}{1 - s} + s) </tex>.
  
===Пример <tex>2</tex>===
+
===Пример 2===
  
 
Используя только что полученные знания о дифференцировании и интегрировании производящих функций, попробуем решить следующее рекуррентное уравнение:
 
Используя только что полученные знания о дифференцировании и интегрировании производящих функций, попробуем решить следующее рекуррентное уравнение:
Строка 56: Строка 56:
 
:<tex> g_n = g_{n - 1} + 2 g_{n - 2} + (-1)^n</tex>
 
:<tex> g_n = g_{n - 1} + 2 g_{n - 2} + (-1)^n</tex>
  
Умножим обе части всех равенств на <tex>z</tex> в соответствующей степени и просуммируем:
+
Умножим обе части всех равенств на z в соответствующей степени и просуммируем:
  
 
:<tex> z^0 g_0 = 1</tex>
 
:<tex> z^0 g_0 = 1</tex>
Строка 85: Строка 85:
 
:<tex>G(z) = \dfrac{1}{3} \times \dfrac{1}{(1 + z)^2} - \dfrac{1}{9} \times \dfrac{1}{1 + z} + \dfrac{7}{9} \times \dfrac{1}{1 - 2 z}</tex>
 
:<tex>G(z) = \dfrac{1}{3} \times \dfrac{1}{(1 + z)^2} - \dfrac{1}{9} \times \dfrac{1}{1 + z} + \dfrac{7}{9} \times \dfrac{1}{1 - 2 z}</tex>
  
Второе и третье слагаемые легко раскладываются в степенной ряд, а вот с первым придётся чуть повозиться. Используя правило дифференцирования производящих функций имеем:
+
Второе и третье слагаемые легко раскладываются в степенной ряд, а вот с первым придется чуть повозиться. Используя правило дифференцирования производящих функций имеем:
  
 
:<tex>\dfrac{1}{(1 + z)^2} = (- \dfrac{1}{1 + z})' = (\sum\limits_{n = 0}^{\infty} (-1)^{n + 1} z^n)' = \sum\limits_{n = 0}^{\infty} (-1)^{n + 1} n z^{n - 1} = \sum\limits_{n = 0}^{\infty} (-1)^n (n + 1) z^n</tex>
 
:<tex>\dfrac{1}{(1 + z)^2} = (- \dfrac{1}{1 + z})' = (\sum\limits_{n = 0}^{\infty} (-1)^{n + 1} z^n)' = \sum\limits_{n = 0}^{\infty} (-1)^{n + 1} n z^{n - 1} = \sum\limits_{n = 0}^{\infty} (-1)^n (n + 1) z^n</tex>
Строка 93: Строка 93:
 
<tex>G(z) = \dfrac{1}{3} \sum\limits_{n = 0}^{\infty} (-1)^n (n + 1) z^n - \dfrac{1}{9} \sum\limits_{n = 0}^{\infty} (-1)^n z^n + \dfrac{7}{9} \sum\limits_{n = 0}^{\infty} 2^n z^n = \sum\limits_{n = 0}^{\infty} (\dfrac{7}{9} 2^n + (-1)^n (\dfrac{1}{3} n + \dfrac{2}{9})) z^n</tex>
 
<tex>G(z) = \dfrac{1}{3} \sum\limits_{n = 0}^{\infty} (-1)^n (n + 1) z^n - \dfrac{1}{9} \sum\limits_{n = 0}^{\infty} (-1)^n z^n + \dfrac{7}{9} \sum\limits_{n = 0}^{\infty} 2^n z^n = \sum\limits_{n = 0}^{\infty} (\dfrac{7}{9} 2^n + (-1)^n (\dfrac{1}{3} n + \dfrac{2}{9})) z^n</tex>
  
Мы искали <tex>G(z)</tex> в виде <tex>G(z) = \sum\limits_{n = 0}^{\infty} g_n z^n</tex>, значит
+
Мы искали G(z) в виде <tex>G(z) = \sum\limits_{n = 0}^{\infty} g_n z^n</tex>, значит
  
 
:<tex>g_n = \dfrac{7}{9} 2^n + (-1)^n (\dfrac{1}{3} n + \dfrac{2}{9})</tex>
 
:<tex>g_n = \dfrac{7}{9} 2^n + (-1)^n (\dfrac{1}{3} n + \dfrac{2}{9})</tex>
  
===Пример <tex>3</tex>===
+
===Пример 3===
  
 
Вычислим обратную функцию к экспоненте. Для этого мы воспользуемся [[Производящая функция#Приложения | разложением экспоненты]]:
 
Вычислим обратную функцию к экспоненте. Для этого мы воспользуемся [[Производящая функция#Приложения | разложением экспоненты]]:
Строка 103: Строка 103:
 
:<tex>e^z = \sum\limits_{z = 0}^{\infty} \dfrac{1}{n!} z^n</tex>
 
:<tex>e^z = \sum\limits_{z = 0}^{\infty} \dfrac{1}{n!} z^n</tex>
  
Разложение экспоненты начинается с <tex>1</tex>, поэтому аргумент логарифма нужно сдвинуть в <tex>1</tex>:
+
Разложение экспоненты начинается с 1, поэтому аргумент логарифма нужно сдвинуть в 1:
  
:<tex>\ln(1 + t) = l_1 t + l_2 t^2 + l_3 t^3 + \dots</tex>
+
:<tex>ln(1 + t) = l_1 t + l_2 t^2 + l_3 t^3 + \dots</tex>
  
(свободный член в разложении равен <tex>0</tex>, поскольку <tex>\ln(1) = 0</tex>). Для вычисления коэффициентов разложения логарифма воспользуемся тем, что производная функции и обратной к ней в произведении дают <tex>1</tex>. Поскольку <tex>\dfrac{d}{ds} e^s = e^s</tex>, получаем
+
(свободный член в разложении равен <tex>0</tex>, поскольку <tex>ln(1) = 0</tex>). Для вычисления коэффициентов разложения логарифма воспользуемся тем, что производная функции и обратной к ней в произведении дают <tex>1</tex>. Поскольку <tex>\dfrac{d}{ds} e^s = e^s</tex>, получаем
  
:<tex>\dfrac{d}{dt} \ln(1 + t) = \dfrac{1}{1 + t} = 1 - t + t^2 - t^3 + t^4 - \dots</tex>,
+
:<tex>\dfrac{d}{dt} ln(1 + t) = \dfrac{1}{1 + t} = 1 - t + t^2 - t^3 + t^4 - \dots</tex>,
  
 
откуда, интегрируя,
 
откуда, интегрируя,
  
:<tex>\ln(1 + t) = t - \dfrac{1}{2}t^2 + \dfrac{1}{3}t^3 - \dfrac{1}{4}t^4 + \dots</tex>
+
:<tex>ln(1 + t) = t - \dfrac{1}{2}t^2 + \dfrac{1}{3}t^3 - \dfrac{1}{4}t^4 + \dots</tex>
  
 
Чаще используется следующий вариант:
 
Чаще используется следующий вариант:
  
:<tex>-\ln(1 - t) = \ln \dfrac{1}{1 - t} = t + \dfrac{1}{2}t^2 + \dfrac{1}{3}t^3 + \dfrac{1}{4}t^4 + \dots</tex>
+
:<tex>-ln(1 - t) = ln \dfrac{1}{1 - t} = t + \dfrac{1}{2}t^2 + \dfrac{1}{3}t^3 + \dfrac{1}{4}t^4 + \dots</tex>
  
 
==Решение обыкновенных дифференциальных уравнений на производящие функции==
 
==Решение обыкновенных дифференциальных уравнений на производящие функции==
Строка 145: Строка 145:
 
:<tex>(F_{01} + F_{11} s + F_{21} s^2 + \dots) t = (F_{01} + F_{11} s + F_{21} s^2 + \dots) (f_0 + f_1 s + f_2 s^2 + \dots) \rightarrow F_{01} f_0</tex>
 
:<tex>(F_{01} + F_{11} s + F_{21} s^2 + \dots) t = (F_{01} + F_{11} s + F_{21} s^2 + \dots) (f_0 + f_1 s + f_2 s^2 + \dots) \rightarrow F_{01} f_0</tex>
  
Возьмем с <tex>n</tex>-го слагаемого:
+
Возьмем со n-го слагаемого:
  
 
:<tex>(F_{0n} + F_{1n} s + F_{2n} s^2 + \dots) t^n = (F_{0n} + F_{1n} s + F_{2n} s^2 + \dots) (f_0 + f_1 s + f_2 s^2 + \dots)^n \rightarrow F_{0n} f_0^n</tex>
 
:<tex>(F_{0n} + F_{1n} s + F_{2n} s^2 + \dots) t^n = (F_{0n} + F_{1n} s + F_{2n} s^2 + \dots) (f_0 + f_1 s + f_2 s^2 + \dots)^n \rightarrow F_{0n} f_0^n</tex>
Строка 161: Строка 161:
 
:<tex>n f_n = \dots \text{ }\text{ }\text{ }\text{ }\text{ } (2)</tex>,
 
:<tex>n f_n = \dots \text{ }\text{ }\text{ }\text{ }\text{ } (2)</tex>,
  
где точками обозначен многочлен от коэффициентов функции <tex>F</tex> и коэффициентов <tex>f_0, f_1, \dots, f_{n-1}</tex> функции <tex>f</tex>. При каждом <tex>n > 0</tex> уравнение <tex>(2)</tex> имеет единственное решение. Значит уравнение <tex>(1)</tex> имеет однозначное решение для каждого <tex>f_0</tex>.
+
где точками обозначен многочлен от коэффициентов функции F и коэффициентов <tex>f_0, f_1, \dots, f_{n-1}</tex> функции <tex>f</tex>. При каждом <tex>n > 0</tex> уравнение <tex>(2)</tex> имеет единственное решение. Значит уравнение <tex>(1)</tex> имеет однозначное решение для каждого <tex>f_0</tex>.
  
 
}}
 
}}

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)