Изменения

Перейти к: навигация, поиск

Карта глубины

11 410 байт добавлено, 19:30, 4 сентября 2022
м
rollbackEdits.php mass rollback
'''Карта глубины''' (англ. depth map) — это изображение, на котором где для каждого пикселя вместо цвета хранится его расстояние до камеры.<ref name="def">Alexey Kurakin "Основы стереозрения"[https://habr.com/ru/post/130300/]</ref>
В компьютерной 3D-графике и [[Компьютерное зрение|компьютерном зрении]] карта глубины представляет собой изображение или канал изображения, содержащий информацию о расстоянии поверхностей объектов сцены от точки обзора.
* Для создания 3D-сенсеров. Они способны строить трёхмерную картину своего окружения, используются для [[Оценка положения|ориентации]] автономного робота в пространстве.
* Для систем, использующих технологии дополненной и виртуальной реальности. Например, камеры, которые фиксируют действия пользователя при игре в видеоигру, использующую технологию видеоиграх с технологией виртуальной реальности.
* Нельзя не отметить, беспилотные автомобилиВ беспилотных автомобилях, которые так же также используют карты глубин для ориентации на дороге.
* Для обработки фотографий. Например, карты глубин используют для размытия фона на фотографии, чтобы добиться более чёткого выделения на ней человека<ref name="expls">Примеры из "Research Guide for Depth Estimation with Deep Learning"[https://www.kdnuggets.com/2019/11/research-guide-depth-estimation-deep-learning.html]</ref>.
== Методы построения карты глубины ==
[[Файл:ToF.jpg|thumb|250px| Рисунок 1. Пример работы ToF-камеры.]]
* '''ToF-камеры''' (англ. Time of Flight). Данный метод Принцип работы данной камеры основан на измерении задержки света. Фактически нам нужно измерить задержку, с которой свет возвращается в каждую точку. Либо, если у нас Имея несколько сенсоров с разным временем накопления заряда, тои, зная сдвиг по времени относительно источника для каждого сенсора и снятой яркости вспышки, мы можем рассчитать сдвиг и, соответственно, расстояние до объекта. Причем чем больше сенсоров задействовано, причем увеличивая количество сенсоров — увеличиваем тем выше точностьметода.
* '''Структурированные световые камеры''' (aнгл. Structured light camera). Это Принцип работы данной камеры один из самых старых и дешёвых способов построить карту глубин. Основная идея крайне проста. Ставим рядом проектор, который создает, например, горизонтальные (а потом и вертикальные) полоски и рядом камеру, которая снимает картину с полосками. В некоторых вариантах используются используется псевдослучайный набор точек (например MS Kinect {{---}} бесконтактный сенсорный игровой контроллер, для консолей Xbox 360, Xbox One и персональных компьютеров под управлением ОС Windows<ref name="kinect"> О MicriSoft Kinect [https://en.wikipedia.org/wiki/Kinect]</ref>.). Проекторы обычно работают в инфракрасном спектре, очевидно, чтобы не мешать пользователям. Поскольку камера и проектор смещены друг относительно друга, то и полоски также будут смещаться пропорционально расстоянию до объекта. Измеряя это смещение, мы можем рассчитывать расстояние до объекта. Вполне понятны проблемысложности, с которыми можно столкнуться при использовании этого метода: это необходимость настройки и калибровки проектора, и проблема того, что нам нужно относительно благоприятное освещение. К примеру, солнце может засветить полосы, и что-то распознать будет тяжело.
== Построения карты глубины по стереопаре ==
Идея, лежащая в основе построения карты глубины по '''стереопаре''', очень проста. Для каждой точки на одном изображении выполняется поиск [[Ключевые точкиизображения|парной ей точки]] <sup>[на 21.01.21 не создан]</sup> на другом изображении. А по паре соответствующих точек можно выполнить [[Триангуляция полигонов (ушная + монотонная)|триангуляцию]] и определить координаты их [[Отображения|прообраза]] в трехмерном пространстве. Зная трехмерные координаты прообраза, глубина вычисляется как расстояние до плоскости камеры.
Парную точку нужно искать на эпиполярной<ref name="Epipolar">Информация о эпиполярной геометрии[https://ru.qaz.wiki/wiki/Epipolar_geometry]</ref> линии. Соответственно, для упрощения поиска изображения выравнивают так, чтобы все эпиполярные линии были параллельны сторонам изображения (обычно горизонтальны). Более того, изображения выравнивают так, чтобы для точки с координатами <math>(x_0, y_0)</math> соответствующая ей эпиполярная линия задавалась уравнением <math>x = x_0</math>. Тогда для каждой точки, соответствующую ей парную точку, нужно искать в той-же строчке на изображении со второй камеры. Такой процесс выравнивания изображений называют '''ректификацией''' (rectification).
[[Файл:Stereo.png|thumb|300px| Рисунок 2. Результат построения карты смещений по 2 двум картинкам.<ref name="img2"> "Основы стереозрения" Рис. 3 [https://habr.com/ru/post/130300/]</ref>]]
После того, как изображения '''ректифицированы''', выполняют поиск соответствующих пар точек. Для каждого пикселя одной картинки с координатами <math>(x_0, y_0)</math> выполняется поиск пикселя на другой картинке. При этом предполагается, что пиксель на второй картинке должен иметь координаты <math>(x_0 - d, y_0)</math>, где <math>d </math> — величина называемая смещением. Поиск соответствующего пикселя выполняется путем вычисления максимума функции отклика, в качестве которой может выступать, например, [[Корреляция случайных величин|корреляция]] окрестностей пикселей. В результате получается карта смещений, пример которой приведен на рис. 2.
Собственно значения глубины обратно пропорциональны величине смещения пикселей.
=== Построение с помощью свёрточных нейронных сетей ===
Используем [[Сверточные нейронные сети|сверточные нейронные сети]] для построения карты глубины следующим образом<ref name="cnn_rew"> Xiaobai Ma, Zhenglin Geng, Zhi Bie "Depth Estimation from Single Image Using CNN-Residual Network" [http://cs231n.stanford.edu/reports/2017/pdfs/203.pdf]</ref>:
* '''Создаем карту смещений''': используя 2 два изображения с камер, близко расположенных друг к другу, создаем карту различий, точно так же как в методе построения по стереопаре.
* "'''Ищем реальную карту глубины для обучения"''': с помощью карты смещений, можем построить карту глубины <math>y</math> вышеописанным способом. Также допустимы другие способы построения карты глубины для обучения нейронной сети.
* '''Функция потерь''': определим [[Функция потерь и эмпирический риск|функцию потерь]], для предсказанной карты <math>\hat y</math>, <math>d_i = log( y_i) - log (\hat y_i)</math>, <math>\lambda \in [0, 1]</math> и <math>n </math> - количество пикселей.<math>L(y, \hat y) = \frac{1}{n} \sum\limits_{i} d^2_i - \frac{\lambda}{n^2}(\sum\limits_{i} d_i)^2</math>, где <math>y_i</math> и <math>\hat y_i</math> это i пискель для для реальной карты глубин и для предсказанной карты, соответственно. Гиперпараметр <math>\lambda</math>, нужен для того, чтобы функция потерь меньше росла при большом количестве пикселей, предсказание для которых достаточно близко к реальному. Например, если <math>\lambda = 0</math>, то мы просто придём к оптимизации в L2 для <math>d_i</math>, т.е. <math>L(y, \hat y) = \frac{1}{n} \sum\limits_{i} d^2_i </math>.<ref name="loss">David Eigen, Christian Puhrsch, Rob Fergus "Depth Map Prediction from a Single Imageusing a Multi-Scale Deep Network" стр. 5</ref>
* '''Обучение свёрточной нейронной сети''': далее идёт обычное обучение нейронной сети по карте различий путем обратного распространения ошибки, оптимизируя заданную выше функцию потерь.
=== Построение с помощью капсульных нейронных сетей ===
Свёрточные нейронные сети способны регистрировать только наличие какого-либо объекта на картинке, не кодируя его ориентацию и положение. Но '''капсульные нейронные сети''' (англ. Capsule Neural Network) <ref name="CapsNet">Sara Sabour, Nicholas Frosst, Geoffrey E. Hinton "Dynamic Routing Between Capsules" [https://arxiv.org/pdf/1710.09829.pdf]</ref> лишены этого недостатка.
[[Файл:capsnet.jpg|thumb|400px| Рисунок 3. Структура капсульной нейронной сети <ref name="img"> "Design and Investigation of Capsule Networks for Sentence Classification" Figure 2. [https://www.mdpi.com/2076-3417/9/11/2200/htm]</ref>.]]
Состояние нейронов капсульной нейронной сети внутри изображения фиксирует свойство области или объекта внутри изображения: его положение и ориентацию.
Использование капсульной нейронной сети аналогично с использованию обычных свёрточных сетей, описанному выше.
В целом, данная сеть показывает более точные результаты предсказания глубины.
=== Построение с помощью PlanetNet (2018)===
Так же есть архитектуры , решающие данную задачу и без обучения на карте смещений, построенной с помощью 2 двух изображений. Одной из таких является '''PlaneNet'''.
'''PlaneNet'''<ref name="planetNet"> Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, Yasutaka Furukawa "PlaneNet: Piece-wise Planar Reconstruction from a Single RGB Image" [https://arxiv.org/abs/1804.06278v1]</ref> {{---}} глубокая нейронная сеть построеная , построенная на расширенных остаточных сетях (aнгл. Dilated Residual Networks или DRN)<ref name="drn"> Fisher Yu, Vladlen Koltun, Thomas Funkhouser "Dilated Residual Networks" [https://arxiv.org/abs/1705.09914]</ref>, она . Она получает карту глубин путем композиции выходов 3 трех подзадач:
[[Файл:PlaneNetPlane net2.jpg|thumb|400px500px| Рисунок 4. Прогнозируемые PlaneNet параметры по одной rgb картинке: cегметация плоскости, параметры плоскостей, неплоская карта глубины<ref name="img4"> Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, Yasutaka Furukawa "PlaneNet: Piece-wise Planar Reconstruction from a Single RGB Image" Figure 2.</ref>.]]
* '''Параметры плоскостей''': пытается пытаемся предсказать количество плоскостей $K$, а после ищем на изображение $K $ плоских поверхностей, каждая поверхность задаётся тремя параметрами<math>P_i</math>: нормальная , прямая и сдвиг. Функцию ошибки определим следующим образом: <math>L = \sum_{i=1}^{K} \min_{j \in [1, \hat K]} \| \hat P_j - P_i \|</math>, где <math>\hat K, \hat P_i</math> и <math>K, P_i</math>, предсказанные и реальные количество и параметры плоскостей, соответственно.
* [[Сегментация изображений|'''Сегметация Сегментация плоскости''']]: ищем группы пикселей, каждая из которых характеризует один смысловой объект. Используем перекрёстную энтропию<ref name="cross-entropy"> О перекрёстной энтропии [https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html]</ref>, как функцию потерь.
* '''Неплоская карта глубины''': ищем одно-канальную (или неплоскую) карту глубины, т.е то есть карту глубины, где каждый пиксель, либо на глубине 0, либо на глубине 1.Авторы обучали и тестировали данные на NYUv2<ref>Датасет NYUv2[https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html]</ref>. === Обучение без учителя поиска карты глубины из видео (2017) === Авторы данной статьи <ref name="cvrp_dnn">Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe "Unsupervised Learning of Depth and Ego-Motion from Video" [https://arxiv.org/abs/1704.07813v2]</ref> предлагают методику оценки глубины одной картинки без учителя и движения камеры из беспорядочной видео нарезки.  [[Файл:Dnn.jpeg|thumb|400px| Рисунок 5. Aрхитектура сети на базе DispNet <ref name="cvrp">Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe "Unsupervised Learning of Depth and Ego-Motion from Video" Figure 4</ref>]] Будем использовать сверточные нейронные сети c глубиной одного вида и многовидовой камерой из неупорядоченного видеоряда. Метод базируется на синтезе видов. Сеть загружает фото объекта в качестве данных ввода и выводит глубину пикселя. Вид объекта может быть синтезирован исходя из глубины на каждого пикселя снимка позиционирования и четкости ближнего вида. Синтез может быть дифференцирован с CNN по геометрии и модулям позиционирования.Авторы взяли на вооружение архитектуру DispNet<ref name="dispNet"> Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer "A Large Dataset to Train Convolutional Networksfor Disparity, Optical Flow, and Scene Flow Estimation" [https://arxiv.org/pdf/1512.02134.pdf]</ref>, которая сконструирована в виде энкодера и декодера с пропущенными соединениями и многомасштабными блоками предсказания. Функция активации ReLU отслеживает все сверточные слои кроме предсказанных.Вид объекта со всех источников формирует входные данные в сеть позиционной оценки. На выходе получается относительная позиция между видом объекта и видом каждого источника. Сеть состоит из двух 7 шаговых сверток за которым следует свертка 1 х 1. За исключением последнего слоя свертки, где применяется нелинейная активация, все другие отслеживаются функцией активации ReLU. Сеть объяснимых предсказаний дает доступ к первым пяти закодированным слоям сети позиционирования. За ней следуют 5 слоев обратной свертки с многомасштабными блоками предсказаний. Кроме слоев предсказаний все уровни свертки и обратной свертки отслеживаются ReLU. Авторы проверяли данную методику на KITTY<ref> Датасет kitty[http://www.cvlibs.net/datasets/kitti/]</ref>. === Неконтролируемая оценка глубины монокуляра с консистенцией слева направо (2017) === [[Файл:Samplers.jpg|thumb|240px| Рисунок 6. Примерная архитектура сети с консистенцией слева направо <ref name="cvrp2017">Clément Godard, Oisin Mac Aodha, Gabriel J. Brostow "Unsupervised Monocular Depth Estimation with Left-Right Consistency" Figure 3 </ref>]] В данной работе<ref name="leftrigth"> Clément Godard, Oisin Mac Aodha, Gabriel J. Brostow "Unsupervised Monocular Depth Estimation with Left-Right Consistency" [https://arxiv.org/abs/1609.03677v3]</ref> предлагается сверточная нейронная сеть, обученная выполнять оценку глубины одного изображения без реальных данных. Авторы предлагают сетевую архитектуру, которая выполняет сквозную оценку глубины изображения, полученного с 1 камеры, без учителя, что обеспечивает согласованность глубины слева направо внутри сети.Сеть оценивает глубину, выводя смещения, которые искажают левое изображение, чтобы соответствовать правому. Левое входное изображение используется для вывода смещений слева направо и справа налево. Сеть генерирует предсказанное изображение с обратным отображением с помощью билинейного сэмплера. Это приводит к полностью дифференциальной модели формирования изображения.Сверточная архитектура вдохновлена так же DispNet'ом. Она состоит из двух частей—кодера и декодера. Декодер использует пропуск соединений из блоков активации кодера, чтобы распознавать детали с высоким разрешением. Сеть предсказывает две карты смещений — слева направо и справа налево.В процессе обучения сеть генерирует изображение путем выборки пикселей из противоположного стереоизображения. Модель формирования изображения использует сэмплер изображений из пространственной трансформаторной сети (STN) для выборки входного изображения с помощью карты смещений. Авторы обучали и тестировали данные на KITTY. === Прогнозирование глубины без датчиков: использование структуры для обучения без учителя по монокулярным видео (2019) === [[Файл:ego.jpeg|thumb|500px| Рисунок 7. Сравнение обычного метода построения карты глубин с помощью эго-движения и предложенного в статье, который использует движения для различных 3D объектов <ref name="aaaif">Vincent Casser, Soeren Pirk, Reza Mahjourian, Anelia Angelova "Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos" Figure 2 </ref>]] '''Визуальная одометрия''' <ref name="визуальная одометрия">Статья о визуальной одометрии[https://en.wikipedia.org/wiki/Visual_odometry]</ref> {{---}} метод оценки положения и ориентации робота или иного устройства в пространстве с помощью анализа последовательности изображений, снятых установленной на нем камерой. Данная статья <ref name="aaai"> Vincent Casser, Soeren Pirk, Reza Mahjourian, Anelia Angelova "Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos" [https://arxiv.org/abs/1811.06152v1]</ref> посвящена задаче обучения без учителя глубины сцены и визуальной одометрии робота, где наблюдение обеспечивается видеозаписями с одной камеры. Это делается путем введения геометрической структуры в процесс обучения. Он включает в себя моделирование сцены и отдельных объектов, одометрии камеры и движения объектов, изучаемых с помощью монокулярных видеовходов. Авторы вводят модель движения объекта, которая имеет ту же архитектуру, что и сеть определения визуальной одометрии. Она принимает последовательность изображений RGB в качестве входных данных и дополняется предварительно вычисленными масками сегментации экземпляров. Работа модели движения заключается в том, чтобы научиться предсказывать векторы трансформации каждого объекта в трехмерном пространстве. Это создает видимость наблюдаемого объекта в соответствующем целевом кадре. Авторы проверяли прогнозирование глубины на KITTY.
== См. также ==
== Источники информации ==
* Чугунов Р.А. Чугунов, Кульневич А.Д. Кульневич, Аксенов С.В. Аксенов "Методика построения карт глубины стереоизображения с помощью капсульной нейронной сети" //Доклады Томского государственного университета систем управления и радиоэлектроники. – 2019. – Т. 22. – №. 1.[https://cyberleninka.ru/article/n/metodika-postroeniya-kart-glubiny-stereoizobrazheniya-s-pomoschyu-kapsulnoy-neyronnoy-seti/viewer] * Alhashim I., Wonka P. High quality monocular depth estimation via transfer learning. arXiv 2018 //arXiv preprint arXiv:1812.11941. [https://arxiv.org/pdf/1812.11941.pdf]
* Alexey Kurakin "Основы стереозрения" Eigen D., Puhrsch C., Fergus R. Depth map prediction from a single image using a multi-scale deep network //Advances in neural information processing systems. – 2014. – Т. 27. – С. 2366-2374. [https://habrarxiv.comorg/ru/post/130300pdf/1406.2283.pdf]
* Dmitriy Vatolin "Камеры глубины — тихая революция" Prakash S., Gu G. Simultaneous localization and mapping with depth prediction using capsule networks for uavs //arXiv preprint arXiv:1808.05336. – 2018. [https://habrarxiv.comorg/ru/post/457524pdf/1808.05336.pdf]
* Ibraheem AlhashimMa X., Geng Z., Peter Wonka "High Quality Monocular Bie Z. Depth Estimation via Transfer Learning" from Single Image Using CNN-Residual Network //SemanticScholar. – 2017. [https://arxivwww.semanticscholar.org/pdfpaper/1812.11941.pdfDepth-Estimation-from-Single-Image-Using-Network-Geng/d79e7fc68e088f094a22910049117e586705bb7d?p2df]
* David Eigen, Christian Puhrsch, Rob Fergus "Depth Map Prediction from a Single Imageusing a Multi-Scale Deep Network [https[Категория://arxiv.org/pdf/1406.2283.pdfМашинное обучение]]
* Sunil Prakash, Gaelan Gu "Simultaneous Localization And Mapping with depth Prediction using Capsule Networks for UAVs" [https[Категория://arxiv.org/pdf/1808.05336.pdfКомпьютерное зрение]]
1632
правки

Навигация