Изменения

Перейти к: навигация, поиск

Квантовые гейты

367 байт добавлено, 15:58, 29 декабря 2014
Отличие кубитов от классических битов
Классический компьютер состоит из элементарных ячеек – битов, двум состояниям которых приписываются значения <tex>1</tex> или <tex>0</tex>. В наборе битов (регистре) записывается и обрабатывается информация в виде двоичных чисел. Один бит имеет два базисных состояния <tex>0</tex> и <tex>1</tex>. Перебирая эти базисные состояния, можно закодировать двоичное число длиной <tex>N</tex>. Например, в системе из трех битов можно записать одну из восьми последовательностей нулей и единиц.
Состояния квантовой системы и их преобразования можно описать используя компактные бра/кет обозначения. Бра и кет (англ. ''bracket'' — скобка)— обозначения, введённые введенные Диракомна заре зарождения квантовой механики как удобное средство манипулирования векторами. Кет-векторами <tex>\mid x\bigr\rangle</tex> обозначают вектор-столбцы и обычно используют для описания квантовых состояний. В середине скобки, по Дираку, должен помещаться индекс состояния, т.е. величина или набор величин, которые определяют состояние системы. Бра-вектор <tex>\left\langle y\right|</tex> обозначает вектор-строку.
В квантовом компьютере кубит – это квантовая система, которая, как и бит, имеет два базисных состояния <tex>\mid0\bigr\rangle</tex> и <tex>\mid 1\bigr\rangle</tex>, но в отличие от бита, кубит может находиться в любом суперпозиционном состоянии <tex>\mid q\bigr\rangle=a\mid0\bigr\rangle+b\mid 1\bigr\rangle</tex>, где <tex>a, b</tex> – комплексные числа, <tex>{\left|a\right|^2}+ {\left|b\right|^2}=1</tex>. Таким образом, квантовый бит может принимать бесконечно много значений, но как результат измерения мы получим либо состояние <tex>\mid0\bigr\rangle</tex> с вероятностью <tex>{\left|a\right|^2} </tex>, либо состояние <tex>\mid 1\bigr\rangle</tex> с
<tex>CNOT(R_{00} \left | \ 00\right \rangle +R_{01} \left | \ 01\right \rangle +R_{10} \left | \ 10\right \rangle +R_{11} \left | \ 11\right \rangle) = R_{00} \left | \ 00\right \rangle +R_{01} \left | \ 01\right \rangle</tex> <tex>+R_{11}\left | \ 10\right \rangle +R_{10} \left | \ 11\right \rangle</tex>
Простейшим двухкубитным контролируемым гейтом в классическом компьютере является <tex>CNOT</tex> гейт (''Controlled NOT''). В квантовых вычислениях вводится подобный гейт, который имеет два входных кубита и два кубита на выходе. Как и в классическом случае один из пары кубитов называется контролирующим, а второй контролируемым или кубитом-мишенью. Логика выполнения операции при этом определяется следующим образом: если контролирующий кубит находится в состоянии <tex>\left |\ 1\right \rangle</tex>, тогда контролируемый кубит подвергается квантовой операции <tex>NOT</tex>, в противном случае контролируемый кубит остается без изменения.
===Другие используемые гейты===
|-
!название Название гейта||графическое Графическое обозначение||матричная Матричная запись||таблица Таблица истинности
|-
| <tex>NOT</tex> || [[Файл:Not2Not2_(1).png‎ png ]] || <tex>\begin{pmatrix} 0& 1 \\ 1 & 0 \end{pmatrix}</tex> || <tex> \begin{array}{|c|c|}
0 & 1 \\
\end{array}</tex>
|-
|<tex>S</tex> (''swap'')|| [[Файл:SSWAP'.jpg‎ ]] ||<tex>\begin{pmatrix} 1 & 0 & 0 &0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}</tex> ||<tex> \begin{array}{|c c|c c|}
\end{array}</tex>
|-
|<tex>CCNOT</tex> (''Toffoli'')|| [[Файл:ТоффолиCCNOT.png]] ||<tex>\begin{pmatrix} 1 & 0 & 0 &0 & 0 & 0 &0 &0 \\ 0 & 1 & 0& 0& 0 &0 & 0 & 0 \\ 0 & 0 & 1 & 0& 0 &0 & 0 & 0 \\0 & 0 & 0& 1& 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\0 & 0 & 0 & 0& 0 & 1 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{pmatrix}</tex> ||
<tex> \begin{array}{|c c c ||c c c|}
A & B & C & A' & B' & C'\\
\end{array}</tex>
|-
|<tex>CSWAP</tex> (гейт Фредкина)||[[Файл:ФредкинCSWAP'.jpg]] || <tex>\begin{pmatrix} 1 & 0 & 0 &0 & 0 & 0 &0 &0 \\ 0 & 1 & 0& 0& 0 &0 & 0 & 0 \\ 0 & 0 & 1 & 0& 0 &0 & 0 & 0 \\0 & 0 & 0& 1& 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\0 & 0 & 0 & 0& 0 & 0 & 1 & 0\\0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{pmatrix}</tex> ||<tex> \begin{array}{|c c c ||c c c|}
A & B & C & A' & B' & C'\\
\hline
Квантовая модель вычислений позволяет:
*[[Разложение на множители (факторизация)|разложить число<tex>M</tex> на множители ]] за <tex>O(\lg^3 M)</tex>, <ref>[https://ru.wikipedia.org/wiki/%C0%EB%E3%EE%F0%E8%F2%EC_%D8%EE%F0%E0 Википедия {{---}} Алгоритм Шора]</ref>* сделать полный перебор за <tex>{\sqrt{n}}</tex>, <ref>[https://ru.wikipedia.org/wiki/%C0%EB%E3%EE%F0%E8%F2%EC_%C3%F0%EE%E2%E5%F0%E0 Википедия {{---}}Алгоритм Гровера]</ref>
* осуществить [[Дискретное логарифмирование в группе|дискретный алгоритм нахождения логарифма]] за полиномиальное время, <ref>[http://cs.mipt.ru/docs/comp/rus/develop/other/quantum_comp/ Квантовые компьютеры и квантовые вычисления]
</ref>
* создать стойкую криптосистему: если "подслушать" квантовый бит, то он изменится. <ref>[http://habrahabr.ru/company/web_payment_ru/blog/229699//Habrahabr {{---}} Квантовые деньги ]</ref>
Построение квантового компьютера в виде реального физического прибора является фундаментальной задачей физики XXI века. В настоящее время построены только ограниченные его варианты (в пределах 512 кубит).
142
правки

Навигация