Редактирование: Китайская теорема об остатках
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 10: | Строка 10: | ||
<tex> x-y \rightarrow (0 , 0 , \ldots , 0) \Leftrightarrow (x-y) \vdots m_i </tex>, значит <tex> x \equiv y(mod \text{ } \prod n_i )</tex>. То есть разных наборов всего n. <br> | <tex> x-y \rightarrow (0 , 0 , \ldots , 0) \Leftrightarrow (x-y) \vdots m_i </tex>, значит <tex> x \equiv y(mod \text{ } \prod n_i )</tex>. То есть разных наборов всего n. <br> | ||
Конструктивное доказательство: <br> | Конструктивное доказательство: <br> | ||
− | Необходимо вычислить элемент <tex> a </tex> по заданным <tex> (a_1 , a_2 , \ldots , a_k) </tex>. Сначала определим величины <tex> m_i = \frac{n}{n_i}</tex>. Другими словами, <tex> m_i</tex> {{---}} произведение всех значений <tex> n_j</tex>, отличных от <tex> n_i</tex>. Затем определим <tex> c_i = m_i({m_i}^{-1} mod \text{ }n_i) </tex>. Величину <tex> a </tex> можно вычислить по формуле <tex> a \equiv (a_1c_1 + a_2c_2 + \ldots + a_kc_k)(mod \text{ } n | + | Необходимо вычислить элемент <tex> a </tex> по заданным <tex> (a_1 , a_2 , \ldots , a_k) </tex>. Сначала определим величины <tex> m_i = \frac{n}{n_i}</tex>. Другими словами, <tex> m_i</tex> {{---}} произведение всех значений <tex> n_j</tex>, отличных от <tex> n_i</tex>. Затем определим <tex> c_i = m_i({m_i}^{-1} mod \text{ }n_i) </tex>. Величину <tex> a </tex> можно вычислить по формуле <tex> a \equiv (a_1c_1 + a_2c_2 + \ldots + a_kc_k)(mod \text{ } n)</tex>. |
}} | }} |