Редактирование: Китайская теорема об остатках
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 5: | Строка 5: | ||
|about=О попарно взаимно простых числах | |about=О попарно взаимно простых числах | ||
|statement= | |statement= | ||
− | Пусть <tex> n = n_1 n_2 \ldots n_k </tex>, где <tex> n_i </tex> {{---}} попарно взаимно простые числа. Рассмотрим соответствие <tex> a \rightarrow (a_1 , a_2 , \ldots , a_k) </tex>, где <tex> a_i = a \ | + | Пусть <tex> n = n_1 n_2 \ldots n_k </tex>, где <tex> n_i </tex> {{---}} попарно взаимно простые числа. Рассмотрим соответствие <tex> a \rightarrow (a_1 , a_2 , \ldots , a_k) </tex>, где <tex> a_i = a(mod \text{ }n)</tex>. Такое соответствие является однозначным, для любого '''а''' (<tex> 0 \le a \le n </tex>). |
|proof= | |proof= | ||
Неконструктивное доказательство : <br> | Неконструктивное доказательство : <br> |