Редактирование: Классификация текстов и анализ тональности

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 81: Строка 81:
 
Байесовская классификация является одним из самых простых, но не значит, что неэффективных, методов в классификации текстов. Данный алгоритм основан на принципе максимума апостериорной вероятности. Для классифицируемого объекта вычисляются функции правдоподобия каждого из классов, по ним вычисляются апостериорные вероятности классов. Объект относится к тому классу, для которого апостериорная вероятность максимальна.
 
Байесовская классификация является одним из самых простых, но не значит, что неэффективных, методов в классификации текстов. Данный алгоритм основан на принципе максимума апостериорной вероятности. Для классифицируемого объекта вычисляются функции правдоподобия каждого из классов, по ним вычисляются апостериорные вероятности классов. Объект относится к тому классу, для которого апостериорная вероятность максимальна.
  
Пусть <math>P(c_i|d)</math> {{---}} вероятность того, что документ, представленный вектором <math>d = (t_1, ..., t_n)</math>, соответствует категории <math>c_i</math> для <math>i = 1, ..., |C|</math>. Задача классификатора заключается в том, чтобы подобрать такие значения <math>c_i</math> и <math>d</math>, при которых значение вероятности <math>P(c_i|d)</math> будет максимальным:
+
Подробно данный алгоритм описан в [[Байесовская классификация|соответствующей статье]].
 
 
<math>c_m = \underset{c \in C}{\operatorname{argmax}} \, P(c|d)</math>
 
 
 
Подробно байесовская классификация описана в [[Байесовская классификация|соответствующей статье]].
 
  
 
Преимущества метода:
 
Преимущества метода:

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: