Редактирование: Классические теоремы о предельном переходе под знаком интеграла Лебега

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 76: Строка 76:
 
Пусть измеримые <tex> f_n </tex>  неотрицательны на <tex> E </tex> и сходятся на <tex> E </tex> по мере к функции <tex> f </tex>. Тогда <tex> \int\limits_E f \le \sup\limits_{n=1,2,\dots} \int\limits_E f_n </tex>.
 
Пусть измеримые <tex> f_n </tex>  неотрицательны на <tex> E </tex> и сходятся на <tex> E </tex> по мере к функции <tex> f </tex>. Тогда <tex> \int\limits_E f \le \sup\limits_{n=1,2,\dots} \int\limits_E f_n </tex>.
 
|proof=
 
|proof=
По теореме Рисса выделяем из <tex> f_n </tex> сходящуюся почти всюду подпоследовательность. <tex> f_n </tex> неотрицательна, <tex> f_{n_k} \to f </tex>, следовательно, <tex> f </tex> тоже неотрицательна почти всюду на <tex> E </tex>, интеграл в неравенстве определен. Справа <tex> sup </tex> — не уменьшая общности, можно считать, что <tex> f_n \to f </tex> почти всюду.  
+
По теореме Риса выделяем из <tex> f_n </tex> сходящуюся почти всюду подпоследовательность. <tex> f_n </tex> неотрицательна, <tex> f_{n_k} \to f </tex>, следовательно, <tex> f </tex> тоже неотрицательна почти всюду на <tex> E </tex>, интеграл в неравенстве определен. Справа <tex> sup </tex> — не уменьшая общности, можно считать, что <tex> f_n \to f </tex> почти всюду.  
  
Пусть <tex> g_n = \min \{ f, f_n \} </tex> (<tex> g_n </tex> — поточечный минимум);
+
Пусть <tex> g_n = \min \{ f, f_n \} </tex>;  
  
 
<tex> g_n </tex> — измерима ( <tex> \min (x, y) = \frac{(x + y) - |x - y|}2 </tex> )  
 
<tex> g_n </tex> — измерима ( <tex> \min (x, y) = \frac{(x + y) - |x - y|}2 </tex> )  
Строка 95: Строка 95:
 
б) <tex> \int\limits_E f = + \infty </tex>.
 
б) <tex> \int\limits_E f = + \infty </tex>.
  
Возьмем любое хорошее <tex> E' </tex> для <tex> f </tex>. <tex> E' </tex> — множество конечной меры, <tex> f </tex> на нем ограничена. <tex> \int\limits_{E'} f < + \infty </tex>. Тогда по уже доказанному, <tex> \int\limits_{E'} f \le \sup\limits_{n \in \mathbb N} \int\limits_{E'} f_n </tex>.
+
Возьмем любое хорошее <tex> E' </tex> для <tex> f </tex>. <tex> E' </tex> — множество конечной меры, <tex> f </tex> на нем ограничена. <tex> \int\limits_{E'} < + \infty </tex>. Тогда по уже доказанному, <tex> \int\limits_{E'} f \le \sup\limits_{n \in \mathbb N} \int\limits_{E'} f_n </tex>.
  
 
Интеграл по любому хорошему <tex> E' </tex> для <tex> f </tex> не превосходит этой константы и, переходя к <tex> \sup </tex> по <tex> E </tex>, получаем <tex> \int\limits_E f \le \sup\limits_{n \in \mathbb N} \int\limits_E f_n </tex>, что и требовалось доказать.
 
Интеграл по любому хорошему <tex> E' </tex> для <tex> f </tex> не превосходит этой константы и, переходя к <tex> \sup </tex> по <tex> E </tex>, получаем <tex> \int\limits_E f \le \sup\limits_{n \in \mathbb N} \int\limits_E f_n </tex>, что и требовалось доказать.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: