Изменения

Перейти к: навигация, поиск
Следствие
[[Суммируемые функции произвольного знака|<<]][[Пространство L_p(E)|>>]]
 
{{В разработке}}
== Теорема Лебега ==
о мажорируемой сходимости
|statement=
Пусть на <tex> E \subset X </tex> задана последовательность измеримых суммируемых функций <tex> f_n </tex>, таких, что <tex> |f_n(x)| \le \varphi(x) </tex> почти всюду, где <tex> \varphi </tex> — измеримаясуммируемая.
Пусть <tex> f_n \underset{E}{\Rightarrow} f </tex> (по мере). Тогда допустим предельный переход под знаком интеграла:
<tex> |f_{n_k}(x)| \le \varphi(x) </tex>. Устремим <tex> k </tex> к бесконечности, тогда <tex> |f(x)| \le \varphi(x) </tex>.
По определению интеграла, <tex> \forall \varepsilon > 0</tex>, можно подобрать <tex> A_\varepsilon </tex> — хорошее для <tex> \varphi: \int\limits_{\overline {A_\varepsilon}} \varphi d \mu < \varepsilon </tex>.
<tex> \left| \int\limits_E f_n - \int\limits_E f \right| \le \int\limits_E |f_n - f| = \int\limits_{{A_\varepsilon}} |f_n - f| + \int\limits_{\overline {A_\varepsilon}} |f_n - f| </tex>
Леви
|statement=
Пусть на <tex> E </tex> задана последовательность измеримых функций, каждая из которых почти всюду неотрицательна и <tex> f_n(x) \le f_{n+1}(x) </tex>. <tex> f(x) = \lim\limits_{n \to \infty} f_n(x) </tex> — почти везде конечна на <tex> E </tex>. Тогда <tex> \lim \limits_n \int\limits_E f_n = \int\limits_E f </tex>.
|proof=
В силу поточечной монотонности <tex> f_n </tex>, <tex> f </tex>, как их предел, определена по теореме Вейерштрасса, предел измеримых функций измерим, поэтому все интегралы имеют смысл, функция неотрицательна.
следствие
|statement=
Пусть <tex> u_n(x) \ge 0 </tex> на и измеримы на <tex> E </tex>, и <tex> \sum\limits_{n = 1}^{\infty} \int\limits_E u_n </tex> — сходится. Тогда <tex> \sum\limits_{n = 1}^{\infty} u_n(x) </tex> сходится почти всюду на <tex> E </tex>.
|proof=
Все интегралы определены (неотрицательные функции). <tex> S_n = \sum\limits_{k = 1}^{n} u_k(x) </tex> с ростом <tex> n </tex> возрастает. Мы хотим установить, что предел <tex> S(x) \rightarrow + \infty </tex> самое большее — на нульмерном множестве.
Пусть измеримые <tex> f_n </tex> неотрицательны на <tex> E </tex> и сходятся на <tex> E </tex> по мере к функции <tex> f </tex>. Тогда <tex> \int\limits_E f \le \sup\limits_{n=1,2,\dots} \int\limits_E f_n </tex>.
|proof=
По теореме Риса Рисса выделяем из <tex> f_n </tex> сходящуюся почти всюду подпоследовательность. <tex> f_n </tex> неотрицательна, <tex> f_{n_k} \to f </tex>, следовательно, <tex> f </tex> тоже неотрицательна почти всюду на <tex> E </tex>, интеграл в неравенстве определен. Справа <tex> sup </tex> — не уменьшая общности, можно считать, что <tex> f_n \to f </tex> почти всюду.
Пусть <tex> g_n = \min \{ f, f_n \} </tex>(<tex> g_n </tex> — поточечный минимум);
<tex> g_n </tex> — измерима ( <tex> \min (x, y) = \frac{(x + y) - |x - y|}2 </tex> )
б) <tex> \int\limits_E f = + \infty </tex>.
Возьмем любое хорошее <tex> E' </tex> для <tex> f </tex>. <tex> E' </tex> — множество конечной меры, <tex> f </tex> на нем ограничена. <tex> \int\limits_{E'} f < + \infty </tex>. Тогда по уже доказанному, <tex> \int\limits_{E'} f \le \sup\limits_{n \in \mathbb N} \int\limits_{E'} f_n </tex>.
Интеграл по любому хорошему <tex> E' </tex> для <tex> f </tex> не превосходит этой константы и, переходя к <tex> \sup </tex> по <tex> E </tex>, получаем <tex> \int\limits_E f \le \sup\limits_{n \in \mathbb N} \int\limits_E f_n </tex>, что и требовалось доказать.
Анонимный участник

Навигация