Классы NC и AC — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теоремы)
(Теоремы)
Строка 23: Строка 23:
 
Это очевидно из определения <tex>NC^i</tex> и <tex>AC^i</tex>. <br/>
 
Это очевидно из определения <tex>NC^i</tex> и <tex>AC^i</tex>. <br/>
 
*<tex>AC^i \subset NC^{i+1}</tex> <br/>
 
*<tex>AC^i \subset NC^{i+1}</tex> <br/>
Пусть <tex>L \in AC^i</tex>. <tex>L</tex> распознается семейством схем <tex>C_n</tex> полиномиального размера. Значит степень входа у элементов схемы <tex>C_n</tex> это полином <tex>r(n)</tex>. Заменим элементы схемы <tex>C_n</tex> элементами со степенью входа не более двух следующим образом: <br/>
+
Пусть <tex>L \in AC^i</tex>. <tex>L</tex> распознается семейством схем <tex>C_n</tex> полиномиального размера. Значит степень входа элементов схемы <tex>C_n</tex> это полином от <tex>n</tex>. Заменим элементы схемы <tex>C_n</tex> элементами со степенью входа не более двух следующим образом: <br/>
 
[[Файл:circuit.jpg]]
 
[[Файл:circuit.jpg]]
При замене каждого такого элемента глубина будет увеличиваться на <tex>log_2 r(n) = O(log(n))</tex> и размер схемы останется полиномиальным.
+
При замене каждого такого элемента глубина схемы увеличивается не более чем на <tex>log_2 r(n) = O(log(n))</tex>, а так как мы добавляем не более <tex>r(n)</tex> элементов, то размер схемы остается полиномиальным.
 
}}
 
}}
 
'''Следствие:'''  <tex>NC = AC</tex><br/>
 
'''Следствие:'''  <tex>NC = AC</tex><br/>

Версия 13:00, 7 мая 2012

Определения

Определение:
[math]NC^i = \mathcal{f} L \mid L — [/math] распознается семейством логических схем размера полином от [math]n[/math] и глубины [math]O(log^i (n))[/math], где [math]n[/math] — длина входа; степень входа элемента не больше двух. Причем такую схему можно построить по [math]1^n[/math] на [math]O(log(n))[/math] памяти.


Определение:
[math]AC^i[/math] определяется аналогично [math]NC^i[/math], только степень входа элемента неограничена.


Определение:
[math]NC = \cup^{\infty}_{i = 0} NC^i[/math]
[math]AC = \cup^{\infty}_{i = 0} AC^i[/math]


Теоремы

Теорема:
[math]NC^i \subset AC^i \subset NC^{i+1}[/math]
Доказательство:
[math]\triangleright[/math]
  • [math]NC^i \subset AC^i[/math]

Это очевидно из определения [math]NC^i[/math] и [math]AC^i[/math].

  • [math]AC^i \subset NC^{i+1}[/math]

Пусть [math]L \in AC^i[/math]. [math]L[/math] распознается семейством схем [math]C_n[/math] полиномиального размера. Значит степень входа элементов схемы [math]C_n[/math] это полином от [math]n[/math]. Заменим элементы схемы [math]C_n[/math] элементами со степенью входа не более двух следующим образом:
Circuit.jpg

При замене каждого такого элемента глубина схемы увеличивается не более чем на [math]log_2 r(n) = O(log(n))[/math], а так как мы добавляем не более [math]r(n)[/math] элементов, то размер схемы остается полиномиальным.
[math]\triangleleft[/math]

Следствие: [math]NC = AC[/math]


Теорема:
[math]NC \subseteq P[/math]
Доказательство:
[math]\triangleright[/math]
Пусть [math]L \in NC[/math]. Тогда [math]L[/math] распознается некоторым семейством схем [math]C_n[/math] которые по [math]1^n[/math] можно построить на [math]O(log(n))[/math] памяти и, следовательно, за полиномиальное от [math]n[/math] время. Построим для данного входа схему и вычислим ее.
[math]\triangleleft[/math]

Равенство [math]NC[/math] и [math]P[/math] — неразрешенная на данный момент задача.


Теорема:
[math]L[/math] распознается параллельным компьютером с [math]O(poly(n))[/math] процессоров за время [math]O(poly(log(n)) \Leftrightarrow L \in NC[/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math]L \in NC[/math]. [math]L[/math] распознается семейством схем [math]C_n[/math], где [math]C_n[/math] размера [math]N=O(poly(n))[/math] и имеет глубину [math]O(log^d n)[/math]. Тогда возьмем параллельный компьютер с [math]N[/math] процессорами, где каждый из них будет играть роль одного элемента схемы. Так как компьютер параллельный, то вычисления на каждом уровне схемы будут выполнятся параллельно. Тогда получаем что всего потребуется [math]O(log^d(n))[/math] времени.

Пусть [math]L[/math] распознается параллельным компьютером с [math]N=O(poly(n))[/math] процессоров за время [math]D=O(log^d n)[/math]. Тогда построим схему глубины [math]D[/math] на каждом уровне которой будет по [math]N[/math] элементов, таких, что [math]i[/math]-й элемент на уровне [math]t[/math] выполняет вычисления, производимые [math]i[/math]-го процессора в момент времени [math]t[/math].
[math]\triangleleft[/math]