Классы NC и AC — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теоремы: Первая теорема)
(Теоремы: Вторая)
Строка 22: Строка 22:
 
==Теоремы==
 
==Теоремы==
 
{{Теорема
 
{{Теорема
|statement=<tex>\mathrm{NC^i} \subset \mathrm{AC^i} \subset \mathrm{NC^{i+1}}</tex>
+
|statement=<tex>\mathrm{NC^i} \subset \mathrm{AC^i} \subset \mathrm{NC^{i+1}}</tex>.
 
|proof=
 
|proof=
 
*<tex>\mathrm{NC^i} \subset \mathrm{AC^i}</tex> <br/>
 
*<tex>\mathrm{NC^i} \subset \mathrm{AC^i}</tex> <br/>
Строка 37: Строка 37:
 
   
 
   
 
{{Теорема
 
{{Теорема
|statement=<tex>\mathrm{NC} \subseteq \mathrm{P}</tex>
+
|statement=<tex>\mathrm{NC} \subseteq \mathrm{P}</tex>.
 
|proof =
 
|proof =
Пусть <tex>L \in \mathrm{NC}</tex>. Тогда <tex>L</tex> распознается некоторым семейством схем <tex>C_n</tex>, таких, что существует детерминированная машина Тьюринга, строящая такую схему по <tex>1^n</tex>, используя <tex>O(log(n))</tex> ячеек памяти. Конфигурация МТ задается положением головки и состоянием ячеек памяти, то есть у МТ может быть <tex>n \cdot 2^{O(log(n))} = O(n^2)</tex> конфигураций. При построении схемы конфигурации не могут повторяться, иначе МТ зациклится, следовательно схема будет построена за полиномиальное от <tex>n</tex> время. Построим для данного входа схему и вычислим ее. На вычисление схемы потребуется полином времени, так как схема полиномиального размера.}}
+
Пусть <tex>L \in \mathrm{NC}</tex>. Тогда <tex>L</tex> распознается некоторым семейством схем <tex>C_n</tex>, таких, что существует детерминированная машина Тьюринга, строящая схему по <tex>1^n</tex>, используя <tex>O(log(n))</tex> ячеек памяти. Конфигурация МТ задается положением головки и состоянием ячеек памяти, то есть у МТ может быть <tex>n \cdot 2^{O(log(n))} = O(n^2)</tex> конфигураций. При построении схемы конфигурации не могут повторяться, иначе МТ зациклится, следовательно схема будет построена за полиномиальное от <tex>n</tex> время. Построим для данного входа схему и вычислим её. На вычисление схемы будет затрачено полиномиальное время, так как размер схемы полиномиален.}}
 
Равенство <tex>\mathrm{NC}</tex> и <tex>\mathrm{P}</tex> — неразрешенная на данный момент задача.
 
Равенство <tex>\mathrm{NC}</tex> и <tex>\mathrm{P}</tex> — неразрешенная на данный момент задача.
  

Версия 19:30, 27 мая 2012

Определения

Определение:
[math]\mathrm{NC^i}[/math] — множество языков, распознаваемых семейством логических схем полиномиального от [math]n[/math] размера, глубиной [math]O(log^i (n))[/math] и со степенью входа каждого элемента не более 2, причем существует детерминированная машина Тьюринга, принимающая на вход [math]1^n[/math] и строящая соответствующую схему используя [math]O(log(n))[/math] ячеек памяти, где [math]n[/math] — длина входа.


Определение:
[math]\mathrm{AC^i}[/math] определяется аналогично [math]\mathrm{NC^i}[/math], за исключением того, что степень входа элемента неограничена.


Определение:
[math]\mathrm{NC} = \bigcup \limits_{i = 0}^{\infty} \mathrm{NC^i}[/math].


Определение:
[math]\mathrm{AC} = \bigcup \limits_{i = 0}^{\infty} \mathrm{AC^i}[/math].


Теоремы

Теорема:
[math]\mathrm{NC^i} \subset \mathrm{AC^i} \subset \mathrm{NC^{i+1}}[/math].
Доказательство:
[math]\triangleright[/math]
  • [math]\mathrm{NC^i} \subset \mathrm{AC^i}[/math]

Это понятно из определения [math]\mathrm{NC^i}[/math] и [math]\mathrm{AC^i}[/math].

  • [math]\mathrm{AC^i} \subset \mathrm{NC^{i+1}}[/math]

Пусть [math]L \in \mathrm{AC^i}[/math]. [math]L[/math] распознается семейством схем [math]C_n[/math] полиномиального размера. Степень входа каждого элемента схемы [math]C_n[/math] не превосходит полинома от [math]n[/math], поскольку степень входа не может превосходить число элементов в схеме. Заменим элементы схемы [math]C_n[/math] элементами со степенью входа не более 2 следующим образом:
Circuit.jpg

При такой замене глубина схемы увеличится не более чем в [math]log_2 r(n) = O(log(n))[/math] раз, а так как изначально глубина схемы была [math]O(log^i(n))[/math], то после замены всех элементов она станет [math]O(log^i(n)) \cdot O(log(n)) = O(log^{i+1}(n))[/math].

При замене одного элемента будет добавлено не более [math]r(n)[/math] элементов, потому, поскольку изначальный размер схемы был полиномиальным и каждый элемент мы заменили полиномиальным числом элементов, после всех замен размер схемы останется полиномиальным.
[math]\triangleleft[/math]

Следствие: [math]\mathrm{NC} = \mathrm{AC}[/math].


Теорема:
[math]\mathrm{NC} \subseteq \mathrm{P}[/math].
Доказательство:
[math]\triangleright[/math]
Пусть [math]L \in \mathrm{NC}[/math]. Тогда [math]L[/math] распознается некоторым семейством схем [math]C_n[/math], таких, что существует детерминированная машина Тьюринга, строящая схему по [math]1^n[/math], используя [math]O(log(n))[/math] ячеек памяти. Конфигурация МТ задается положением головки и состоянием ячеек памяти, то есть у МТ может быть [math]n \cdot 2^{O(log(n))} = O(n^2)[/math] конфигураций. При построении схемы конфигурации не могут повторяться, иначе МТ зациклится, следовательно схема будет построена за полиномиальное от [math]n[/math] время. Построим для данного входа схему и вычислим её. На вычисление схемы будет затрачено полиномиальное время, так как размер схемы полиномиален.
[math]\triangleleft[/math]

Равенство [math]\mathrm{NC}[/math] и [math]\mathrm{P}[/math] — неразрешенная на данный момент задача.


Теорема:
[math]L[/math] распознается параллельным компьютером с [math]O(poly(n))[/math] процессоров за время [math]O(poly(log(n)) \Leftrightarrow L \in \mathrm{NC}[/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math]L \in \mathrm{NC}[/math]. [math]L[/math] распознается семейством схем [math]C_n[/math], где [math]C_n[/math] размера [math]N=O(poly(n))[/math] и имеет глубину [math]O(log^d n)[/math]. Тогда возьмем параллельный компьютер с [math]N[/math] процессорами, где каждый из них будет играть роль одного элемента схемы. Так как компьютер параллельный, то вычисления на каждом уровне схемы будут выполнятся параллельно. Тогда получаем, что всего потребуется [math]O(log^d(n))[/math] времени.

Пусть [math]L[/math] распознается параллельным компьютером с [math]N=O(poly(n))[/math] процессоров за время [math]D=O(log^d n)[/math]. Тогда построим схему глубины [math]D[/math], на каждом уровне которой будет по [math]N[/math] элементов, таких, что [math]i[/math]-й элемент на уровне [math]t[/math] выполняет вычисления, производимые [math]i[/math]-м процессором в момент времени [math]t[/math]. Всего в схеме будет [math]N \cdot D = O(poly(n)) \cdot O(log^d n) = O(poly(n))[/math] элементов.
[math]\triangleleft[/math]