Изменения

Перейти к: навигация, поиск

Классы PH, Σ и Π

3700 байт добавлено, 19:19, 4 сентября 2022
м
rollbackEdits.php mass rollback
 
== Классы Σ и Π ==
{{Определение
|definition =
<tex>\Sigma_{i} = \{L\bigm|\exists R(x,y_{1},\cdots,y_{i}) \in \mathrm{P}, p </tex> {{- --}} <tex>poly : \forall x \in L \Leftrightarrow \exists y_{1} \forall y_{2} \exists y_{3} \cdots Q y_{i} : \forall j |y_{j}|~\le~p(|x|), R(x,y_{1},\cdots,y_{i})\},</tex><br/>где <tex>L</tex> - формальный язык <tex>,Q = \exists</tex> для <tex>i = 2k-1,</tex> <tex>Q = \forall</tex> для <tex>i = 2k</tex>.
}}
{{Определение
|definition =
<tex>\Pi_{i} = \{L\bigm|\exists R(x, y_{1},\cdots,y_{i}) \in \mathrm{P}, p </tex> {{- --}} <tex>poly : \forall x \in L \Leftrightarrow \forall y_{1} \exists y_{2} \forall y_{3} \cdots Q y_{i} : \forall j |y_{j}|~\le~p(|x|), R(x, y_{1}, \cdots, y_{i}) \},</tex><br/>где <tex>L</tex> - формальный язык <tex>,Q = \forall</tex> для <tex>i = 2k - 1,</tex> <tex>Q = \exists</tex> для <tex>i = 2k</tex>.
}}
==Взаимоотношения Соотношения между классами <tex>\Sigma_{i}</tex> Σ и <tex>\Pi_{i}</tex>Π ==
{{Теорема
|statement = <tex>\Sigma_{i} \subset \Sigma_{i+1} \cap \Pi_{i+1}</tex>.|proof = Пусть <tex>\left]L \in \Sigma_{i} \Rightarrow \exists R : x \in L \Leftrightarrow \exists y_{1} \cdots Q y_{i} : R(x,y_{1},\cdots,y_{i}), \forall j |y_{j}| \right.le poly(|x|)</tex>.<br/>Проверим, что <tex>? L \in \Sigma_{i+1} \Leftrightarrow \exists R' : x \in L \Leftrightarrow \exists y_{1} \cdots Q y_{i} \bar{Q} y_{i+1} : R'(x,y_{1},\cdots,y_{i},y_{i+1})</tex>.
<br/>
<tex>R'(x,y_{1},\cdots,y_{i+1})</tex> {
return <tex>R(x,y_{1},\cdots,y_{i})</tex>;
}
Проверим, что <tex>? L \in \Pi_{i+1} \Leftrightarrow \exists R'' : x \in L \Leftrightarrow \forall y_{0} \exists y_{1} \cdots Q y_{i} : R''(x,y_{0},y_{1},\cdots,y_{i})</tex>.
<br/>
<tex>R''(x,y_{0},y_{1},\cdots,y_{i})</tex> {
return <tex>R(x,y_{1},\cdots,y_{i})</tex>;
}
Т.о.Таким образом, <tex>\Sigma_{i} \subset \Sigma_{i+1}, \Sigma_{i} \subset \Pi_{i+1} \Rightarrow \Sigma_{i} \subset \Sigma_{i+1} \cap \Pi_{i+1}</tex>.}} {{Теорема|statement = <tex>\Sigma_{i} = \mathrm{co\Pi_{i}}</tex>.|proof = <tex>\mathrm{co\Pi_{i}} = \{L \bigm| \exists R(x,y_{1},\cdots,y_{i}) \in \mathrm{P}, p</tex> {{---}} <tex>poly: x \in L \Leftrightarrow \exists y_{1} \forall y_{2} \cdots Q y_{i} : \forall j |y_j|~\le~p(|x|), R(x,y_{1},\cdots,y_{i})\}.</tex><br/>Из самого выражения для <tex>\mathrm{co\Pi_{i}}</tex> очевидно равенство.}} == Пример Σ и Π-полных задач =={{Определение|definition = Задачей <tex>\mathrm{QBF^{\Sigma}_{k}}</tex> называется объединение удовлетворимых булевых формул с <tex>k</tex> изменениями кванторов, где первым квантором является <tex>\exists</tex>.<br/><tex>\mathrm{QBF^{\Sigma}_{k}} = \{\phi \bigm| \exists X_{1} \forall X_{2} \exists X_{3} \cdots : \phi(X_{1} \cdots X_{k})\}</tex>,<br/>где <tex>X_{i}</tex> {{---}} попарно непересекающиеся множества аргументов <tex>\phi</tex>.}}<tex>\mathrm{QBF^{\Sigma}_{k}}</tex> {{---}} <tex>\mathrm{\Sigma_{k}}</tex>-полная задача (доказательство аналогично доказательству [[Теорема Бермана — Форчуна|coNP-полноты TAUT]]). {{Определение|definition = Задачей <tex>\mathrm{QBF^{\Pi}_{k}}</tex> называется объединение удовлетворимых булевых формул с <tex>k</tex> изменениями кванторов, где первым квантором является <tex>\forall</tex>.<br/><tex>\mathrm{QBF^{\Pi}_{k}} = \{\phi \bigm| \forall X_{1} \exists X_{2} \forall X_{3} \cdots : \phi(X_{1} \cdots X_{k})\}</tex>,<br/>где <tex>X_{i}</tex> {{---}} попарно непересекающиеся множества аргументов <tex>\phi</tex>.
}}
Аналогично предыдущей, <tex>\mathrm{QBF^{\Pi}_{k}}</tex> {{---}} <tex>\mathrm{\Pi_{k}}</tex>-полная задача.
 
== Класс PH ==
{{Определение
|definition =
<tex>\mathrm{PH} = {\bigcup \atop {i \in \mathbb{N}}} \Sigma_{i}</tex>.<br/>
}}
Замечание: иногда удобнее пользоваться альтернативными определениями <tex>\mathrm{PH}</tex>. Например:
* <tex>\mathrm{PH} = {\bigcup \atop {i \in \mathbb{N}}} \Pi_{i}</tex>,<br/>
* <tex>\mathrm{PH} = {\bigcup \atop {i \in \mathbb{N}}} (\Sigma_{i} \cup \Pi_{i})</tex>.
 
{{Теорема
|statement = <tex>\mathrm{PH} \subset \mathrm{PS}</tex>.
|proof = Пусть <tex>L \in \Sigma_{i} \Rightarrow \exists R : x \in L \Leftrightarrow \exists y_{1} \cdots Q y_{i} : R(x,y_{1},\cdots,y_{i}), \forall j |y_{j}| \le poly(|x|)</tex>.<br/>
То есть, для перебора всех возможных значений <tex>y_{j}</tex> потребуется не более, чем <tex>i \cdot poly(|x|)</tex> памяти. Заметим, что <tex>i \cdot poly(|x|)</tex> тоже полином.
Таким образом, для любого формального языка из <tex>\mathrm{PH}</tex> существует программа, разрешающая его на полиномиальной памяти. То есть, любой формальный язык из <tex>\mathrm{PH}</tex> принадлежит <tex>\mathrm{PS}</tex>.
}}
 
[[Категория:Классы сложности]]
1632
правки

Навигация