Изменения

Перейти к: навигация, поиск

Кластеризация

3810 байт убрано, 22:59, 30 января 2019
Нет описания правки
[[Файл:clusterclusters.png|thumb|300px|Пример кластеризации. Красным цветом выделены неклассифицированные объекты.]]
'''Кластеризация''' (англ. ''cluster analysis'') {{---}} задача группировки множества объектов на подмножества ('''кластеры''') таким образом,
чтобы объекты из одного кластера были более похожи друг на друга, чем на объекты из других кластеров по какому-либо критерию.
Решение задачи кластеризации объективно неоднозначно по ряду причин:
* не Не существует однозначного критерия качества кластеризации. Известен ряд алгоритмов, осуществляющих разумную кластеризацию "по построению", однако все они могут давать разные результаты. Следовательно, для определения качества кластеризации и оценки выделенных кластеров необходим эксперт предметной области.;* число Число кластеров, как правило, заранее не известно и выбирается по субъективным критериям. Даже если алгоритм не требует изначального знания о числе классов, конкретные реализации зачастую требуют указать этот параметр<ref>[https://scikit-learn.org/0.20stable/modules/clustering.html scikit-learn {{---}} Clustering]</ref>.;* результат Результат кластеризации существенно зависит от метрики. Однако существует ряд рекомендаций по выбору метрик для определенных классов задач.<ref>Cornwell, B. (2015). Linkage Criteria for Agglomerative Hierarchical Clustering. Social Sequence Analysis, 270–274</ref>. Число кластеров фактически является гиперпараметром для алгоритмов кластеризации. Подробнее про другие гиперпараметры и их настройку можно прочитать в статье<ref>Shalamov Viacheslav, Valeria Efimova, Sergey Muravyov, and Andrey Filchenkov. "Reinforcement-based Method for Simultaneous Clustering Algorithm Selection and its Hyperparameters Optimization." Procedia Computer Science 136 (2018): 144-153.</ref>. == Теорема невозможности Клейнберга ==Для формализации алгоритмов кластеризации была использована аксиоматическая теория. Клейнберг постулировал три простых свойства в качестве аксиом кластеризации и доказал теорему, связывающую эти свойства.{{Определение|definition =Алгоритм кластеризации <tex>a</tex> является '''масштабно инвариантным''' (англ. ''scale-invariant''), если для любой функции расстояния <tex>\rho</tex> и любой константы <tex>\alpha > 0</tex> результаты кластеризации с использованием расстояний <tex>\rho</tex> и <tex>\alpha\cdot\rho</tex> совпадают.}} Первая аксиома интуитивно понятна. Она требует, чтобы функция кластеризации не зависела от системы счисления функции расстояния и была нечувствительна к линейному растяжению и сжатию метрического пространства обучающей выборки.{{Определение|definition ='''Полнота''' (англ. ''Richness''). Множество результатов кластеризации алгоритма <tex>a</tex> в зависимости от изменения функции расстояния <tex>\rho</tex> должно совпадать со множеством всех возможных разбиений множества объектов <tex>X</tex>.}} Вторая аксиома утверждает, что алгоритм кластеризации должен уметь кластеризовать обучающую выборку на любое фиксированное разбиение для какой-то функции расстояния <tex>\rho</tex>.{{Определение|definition =Функция расстояния <tex>{\rho}'</tex> является '''допустимым преобразованием''' функции расстояния <tex>\rho</tex>, если#<tex>{\rho}'(x_i, x_j) \leqslant \rho(x_i, x_j)</tex>, если <tex>x_i</tex> и <tex>x_j</tex> лежат в одном кластере;#<tex>{\rho}'(x_i, x_j) \geqslant \rho(x_i, x_j)</tex>, если <tex>x_i</tex> и <tex>x_j</tex> лежат в разных кластерах.}}{{Определение|definition =Алгоритм кластеризации является '''согласованным''' (англ. ''consistent''), если результат кластеризации не изменяется после допустимого преобразования функции расстояния.}} Третья аксиома требует сохранения кластеров при уменьшении внутрикластерного расстояния и увеличении межкластерного расстояния. {| class="wikitable"| style="text-align:center; font-weight:bold;" colspan=3|Примеры преобразований с сохранением кластеров|-| style="padding:5px;" |[[Файл:cluster_0.png|300px]]| style="padding:5px;" |[[Файл:clusters_scale_inv.png|300px]]| style="padding:5px;" |[[Файл:cluster_consist.png|300px]]|-| style="text-align:center;width:305px;" | Исходное расположение объектов и их кластеризация| style="text-align:center;width:305px;" | Пример масштабной инвариантности. Уменьшен масштаб по оси ординат в два раза.| style="text-align:center;width:305px;" | Пример допустимого преобразования. Каждый объект в два раза приближен к центроиду своего класса. Внутриклассовое расстояние уменьшилось, межклассовое увеличилось.|}  Исходя из этих аксиом Клейнберг сформулировал и доказал теорему:{{Теорема|author=Клейнберга|about=о невозможности|statement=Для множества объектов, состоящего из двух и более элементов, не существует алгоритма кластеризации, который был бы одновременно масштабно-инвариантным, согласованным и полным.}}Несмотря на эту теорему Клейнберг показал<ref>[https://www.cs.cornell.edu/home/kleinber/nips15.pdf Kleinberg J. An Impossibility Theorem for Clustering]</ref>, что иерархическая кластеризация по методу одиночной связи с различными критериями останова удовлетворяет любым двум из трех аксиом.
== Типология задач кластеризации ==
=== Типы входных данных ===
* Признаковое описание объектов. Каждый объект описывается набором своих характеристик, называемых признаками (англ. ''features''). Признаки могут быть как числовыми, так и нечисловыми.категориальными;
* Матрица расстояний между объектами. Каждый объект описывается расстоянием до всех объектов из обучающей выборки.
=== Цели кластеризации ===
* Классификация объектов. Попытка понять зависимости между объектами путем выявления их кластерной структуры. Разбиение выборки на группы схожих объектов упрощает дальнейшую обработку данных и принятие решений, позволяет применить к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй»). В данном случае стремятся уменьшить число кластеров для выявления наиболее общих закономерностей.;* Сжатие данных. Можно сократить размер исходной выборки, взяв один или несколько наиболее типичных представителей каждого кластера. Здесь важно наиболее точно очертить границы каждого кластера, их количество не является важным критерием.;
* Обнаружение новизны (обнаружение шума). Выделение объектов, которые не подходят по критериям ни в один кластер. Обнаруженные объекты в дальнейшем обрабатывают отдельно.
=== Методы кластеризации ===
* Графовые алгоритмы кластеризации. Наиболее примитивный класс алгоритмов. В настоящее время практически не применяется на практике.;* Вероятностные алгоритмы кластеризации. Каждый объект из обучающей выборки относится к каждому из кластеров с определенной степенью вероятности:** [[EM-алгоритм]]<sup>[на 28.01.19 не создан]</sup>;*[[Иерархическая_кластеризация|Иерархические алгоритмы кластеризации]]. Упорядочивание данных путем создания иерархии вложенных кластеров;* [[K-средних|Алгоритм <tex>\mathrm{k-}</tex>-средних ]]<sup>[на 28.01.19 не создан]</sup> (англ. ''<tex>\mathrm{k-}</tex>-means''). Итеративный алгоритм, основанный на минимизации суммарного квадратичного отклонения точек кластеров от центров этих кластеров;*Распространение похожести (англ. ''affinity propagation''). Распространяет сообщения о похожести между парами объектов для выбора типичных представителей каждого кластера;* Сдвиг среднего значения (англ. ''mean shift''). Выбирает центроиды кластеров в областях с наибольшей плотностью;* Спектральная кластеризация (англ. ''spectral clustering''). Использует собственные значения матрицы расстояний для понижения размерности перед использованием других методов кластеризации;* EMОснованная на плотности пространственная кластеризация для приложений с шумами (англ. ''Density-based spatial clustering of applications with noise'', ''DBSCAN''). Алгоритм группирует в один кластер точки в области с высокой плотностью. Одиноко расположенные точки помечает как шум.  [[Файл:cluster_comparison.png|thumb|800px|center|<div style="text-align:center">Сравнение алгоритмов кластеризации из пакета scikit-learn<ref>[https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html scikit-learn {{---алгоритм}} Comparing different clustering algorithms on toy datasets]</ref></div>]] == Меры качества кластеризации ==* Иерархические алгоритмы Для оценки качества кластеризациизадачу можно переформулировать в терминах задачи дискретной оптимизации. Упорядочивание данных путем создания иерархии вложенных Необходима так сопоставить объектам из множества <tex>X</tex> метки кластеров, чтобы значение выбранного функционала качества приняло наилучшее значение. В качестве примера, стремятся достичь минимума среднего внутрикластерного расстояния <tex>F_0 = \dfrac{\sum_{i<j}{[y_i=y_j]\cdot\rho(x_i, x_j)}}{\sum_{i<j}[y_i=y_j]}</tex> или максимума среднего межкластерного расстояния <tex>F_1 = \dfrac{\sum_{i<j}{[y_i\neq y_j]\cdot\rho(x_i, x_j)}}{\sum_{i<j}[y_i\neq y_j]}</tex>. Подробнее про меры качества можно прочитать в статье [[Оценка_качества_в_задаче_кластеризации|оценка качества в задаче кластеризации]].
== Применение ==
=== Биология и биоинформатика ===
* В области экологии кластеризация используется для выделения пространственных и временных сообщест сообществ организмов в однородных условиях.;* Кластерный анализ используется для группировки схожих геномных последовательностей в семейство генов, которые являются консервативными структурами для многих организмов и могут выполнять схожие функции.;* Кластеризация помогает автоматически определять генотипы по различным частям хромосом.;
* Алгоритмы применяются для выделения небольшого числа групп генетических вариации человеческого генома.
=== Медицина ===
* Используется в позитронно-эмиссионной томографии для автоматического выделения различных типов тканей на трехмерном изображении.;
* Применяется для выявления шаблонов устойчивости к антибиотикам; для классификации антибиотиков по типу антибактериальной активности.
=== Маркетинг ===
Может применяться для выделения типичных групп покупателей, разделения рынка для создания персонализированных предложений, разработки новых линий продукции.
=== Интернет ===
* Выделение групп людей на основе графа связей в социальных сетях.;
* Повышение релевантности ответов на поисковые запросы путем группировки веб-сайтов по смысловым значениям поискового запроса.
=== Компьютерные науки ===
* Кластеризация используется в сегментации изображений для определения границ и распознавания объектов.;* Кластерный анализ применяется для определения образовавшихся популяционных ниш в ходе работы эволюционных алгоритмов для улучшения параметров эволюции.;* Подбор рекомендаций для пользователя на основе предпочтений других пользователей в данном кластере.;
* Определение аномалий путем построения кластеров и выявления неклассифицированных объектов.
 
== Иерархическая кластеризация ==
{{Определение
|definition =
'''Иерархическая кластеризация''' (англ. ''hierarchical clustering'') — множество алгоритмов
кластеризации, направленных на создание иерархии вложенных разбиений исходного множества объектов.
}}
Иерархические алгоритмы кластеризации часто называют '''алгоритмами таксономии'''.
Для визуального представления результатов кластеризации используется '''дендрограмма'''
{{---}} дерево, построенное по матрице мер близости между кластерами. В узлах дерева находятся подмножества объектов из обучающей выборки.
При этом на каждом ярусе дерева множество объектов из всех узлов составляет исходное множество объектов.
Объединение узлов между ярусами соответствует слиянию двух кластеров. При этом длина ребра соответствует расстоянию между кластерами.
 
Дерево строится от листьев к корню. В начальный момент времени каждый объект содержится в собственном кластере.
Далее происходит итеративный процесс слияния двух ближайших кластеров до тех пор, пока все кластеры не объединятся в один или не будет найдено необходимое число кластеров.
На каждом шаге необходимо уметь вычислять расстояние между кластерами и пересчитывать расстояние между новыми кластерами.
Расстояние между одноэлементными кластерами определяется через расстояние между объектами: <tex>\mathrm{R}(\{x\}, \{y\}) = \rho(x, y)</tex>.
Для вычисления расстояния <tex>\mathrm{R}(U, V)</tex> между кластерами <tex>\mathrm{U}</tex> и <tex>\mathrm{V}</tex> на практике используются различные функции в зависимости от специфики задачи.
 
=== Функции расстояния между кластерами ===
* '''Метод одиночной связи''' (англ. ''single linkage'')
: <tex>\mathrm{R_{min}}(U, V) = \displaystyle\min_{u \in U, v \in V} \rho(u, v)</tex>
* '''Метод полной связи''' (англ. ''complete linkage'')
: <tex>\mathrm{R_{max}}(U, V) = \displaystyle\max_{u \in U, v \in V} \rho(u, v)</tex>
* '''Метод средней связи''' (англ. ''UPGMA (Unweighted Pair Group Method with Arithmetic mean)'')
: <tex>\mathrm{R_{avg}}(U, V) = \displaystyle\dfrac{1}{|U| \cdot |V|}\sum_{u \in U} \sum_{v \in V} \rho(u, v)</tex>
* '''Центроидный метод''' (англ. ''UPGMC (Unweighted Pair Group Method with Centroid average)'')
: <tex>\mathrm{R_{c}}(U, V) = \displaystyle\rho^2\left(\sum_{u \in U}\dfrac{u}{|U|}, \sum_{v \in V}\dfrac{v}{|V|}\right)</tex>
* '''Метод Уорда''' (англ. ''Ward's method'')
: <tex>\mathrm{R_{ward}}(U, V) = \displaystyle\dfrac{|U| \cdot |V|}{|U| + |V|}\rho^2\left(\sum_{u \in U}\dfrac{u}{|U|}, \sum_{v \in V}\dfrac{v}{|V|}\right)</tex>
 
=== Формула Ланса-Уильямса ===
На каждом шаге необходимо уметь быстро подсчитывать расстояние от образовавшегося кластера <tex>\mathrm{W}=\mathrm{U}\cup\mathrm{V}</tex> до любого другого кластера <tex>\mathrm{S}</tex>, используя известные расстояния с предыдущих шагов.
Это легко выполняется при использовании формулы, предложенной Лансом и Уильямсом в 1967 году:
<center><tex>\mathrm{R}(W, S) = \alpha_U \cdot \mathrm{R}(U, S) + \alpha_V \cdot \mathrm{R}(V, S) + \beta \cdot \mathrm{R}(U, V) + \gamma \cdot |\mathrm{R}(U, S) - \mathrm{R}(V, S)| </tex></center>
, где <tex>\alpha_U, \alpha_V, \beta, \gamma </tex> {{---}} числовые параметры.
 
Каждая из указанных выше функций расстояния удовлетворяет формуле Ланса-Уильямса со следующими коэффициентами:
* '''Метод одиночной связи''' (англ. ''single linkage'')
: <tex>\alpha_U = \dfrac{1}{2}, \alpha_V = \dfrac{1}{2}, \beta = 0, \gamma = -\dfrac{1}{2}</tex>
* '''Метод полной связи''' (англ. ''complete linkage'')
: <tex>\alpha_U = \dfrac{1}{2}, \alpha_V = \dfrac{1}{2}, \beta = 0, \gamma = \dfrac{1}{2} </tex>
* '''Метод средней связи''' (англ. ''UPGMA (Unweighted Pair Group Method with Arithmetic mean)'')
: <tex>\alpha_U = \dfrac{|U|}{|W|}, \alpha_V = \dfrac{|V|}{|W|}, \beta = 0, \gamma = 0 </tex>
* '''Центроидный метод''' (англ. ''UPGMC (Unweighted Pair Group Method with Centroid average)'')
: <tex>\alpha_U = \dfrac{|U|}{|W|}, \alpha_V = \dfrac{|V|}{|W|}, \beta = -\alpha_U \cdot \alpha_V, \gamma = 0</tex>
* '''Метод Уорда''' (англ. ''Ward's method'')
: <tex>\alpha_U = \dfrac{|S|+|U|}{|S|+|W|}, \alpha_V = \dfrac{|S|+|V|}{|S|+|W|}, \beta = \dfrac{-|S|}{|S|+|W|}, \gamma = 0 </tex>
 
=== Свойство монотонности ===
Введем обозначение <tex>\mathrm{R_t}</tex> {{---}} расстояние между кластерами, выбранными на шаге <tex>t</tex> для объединения.
 
Дендрограмма позволяет представлять зависимости между множеством объектов с любым числом заданных характеристик
на двумерном графике, где по одной из осей откладываются все объекты, а по другой {{---}} расстояние <tex>\mathrm{R_t}</tex>.
Если не накладывать на это расстояние никаких ограничений, то дендрограмма будет иметь большое число самопересечений и изображение перестанет быть наглядным.
Чтобы любой кластер мог быть представлен в виде непрерывного отрезка на оси объектов и ребра не пересекались,
необходимо наложить ограничение монотонности на <tex>\mathrm{R_t}</tex>.
{{Определение
|definition =
Функция расстояния <tex>\mathrm{R}</tex> является '''монотонной''', если на каждом следующем шаге расстояние между кластерами не уменьшается:
<tex>\mathrm{R_2} \leqslant \mathrm{R_3} \leqslant \dots \leqslant \mathrm{R_m}</tex>
}}
 
Расстояние является монотонным, если для коэффициентов в формул Ланса-Уильямса верна теорема Миллигана.
{{Теорема
|author=Миллиган, 1979
|statement=Если выполняются следующие три условия, то кластеризация является монотонной:
# <tex>\alpha_U \geqslant 0, \alpha_V \geqslant 0 </tex>;
# <tex>\alpha_U + \alpha_V + \beta \geqslant 1</tex>;
# <tex>\min\{\alpha_U, \alpha_V\} + \gamma \geqslant 0 </tex>.
}}
 
Из перечисленных выше расстояний теореме удовлетворяют все, кроме центроидного.
 
=== Определение числа кластеров ===
Для определения числа кластеров находится интервал максимальной длины <tex>|\mathrm{R_{t+1}} - \mathrm{R_t}|</tex>.
В качестве итоговых кластеров выдаются кластеры, полученные на шаге <tex>\mathrm{t}</tex>.
При этом число кластеров равно <tex>m - t + 1</tex>.
 
Однако, когда число кластеров заранее неизвестно и объектов в выборке не очень много, бывает полезно изучить дендрограмму целиком.
 
=== Псевдокод ===
<font color=darkgreen>// алгоритм принимает множество объектов и возвращает множество кластеров для каждого шага </font>
'''function''' hierarchy(X: '''Set<Object>'''): '''Set<Set<Object>>'''
t = 1
<tex>\mathrm{C_t} = {{x_1}, \dots, {x_m}}</tex>
'''for''' i = 2 '''to''' m
<tex>\langle U, V \rangle = \displaystyle \arg \min_{U \neq V, U \in C_{i-1}, V \in C_{i-1}} R(U, V)</tex>
<tex>\mathrm{R_{t}} = \mathrm{R}(U, V)</tex>
<tex>\mathrm{C_{i}} = \mathrm{C_{i-1}} \cup \{\mathrm{W}\} \setminus \{\mathrm{U}, \mathrm{V}\}</tex>
'''for''' <tex> S </tex> '''in''' <tex> C_t </tex>
<tex>\mathrm{R_{i}}(W, S) = \alpha_U \cdot \mathrm{R_{i-1}}(U, S) + \alpha_V \cdot \mathrm{R_{i-1}}(V, S) + \beta \cdot \mathrm{R_{i-1}}(U, V) + \gamma \cdot |\mathrm{R_{i-1}}(U, S) - \mathrm{R{i-1}}(V, S)| </tex>
'''return''' <tex> C </tex>
 
=== Пример ===
<font color=darkgreen># Подключение библиотек</font>
from scipy.cluster.hierarchy import linkage, dendrogram
from sklearn import datasets
import matplotlib.pyplot as plt
<tex></tex>
<font color=darkgreen># Создание полотна для рисования</font>
fig = plt.figure(figsize=(15, 30))
fig.patch.set_facecolor('white')
<tex></tex>
<font color=darkgreen># Загрузка набора данных "Ирисы Фишера"</font>
iris = datasets.load_iris()
<tex></tex>
<font color=darkgreen># Реализация иерархической кластеризации при помощи функции linkage</font>
mergings = linkage(iris.data, method='ward')
<tex></tex>
<font color=darkgreen># Построение дендрограммы. Разными цветами выделены автоматически определенные кластеры</font>
R = dendrogram(mergings, labels=[iris.target_names[i] for i in iris.target], orientation = 'left', leaf_font_size = 12)
<tex></tex>
<font color=darkgreen># Отображение дендрограммы</font>
plt.show()
 
{| class="wikitable"
| style="text-align:center; font-weight:bold;" colspan = 4 |Дендрограммы кластеризации ирисов Фишера<ref>[https://ru.wikipedia.org/wiki/%D0%98%D1%80%D0%B8%D1%81%D1%8B_%D0%A4%D0%B8%D1%88%D0%B5%D1%80%D0%B0 Википедия {{---}} Ирисы Фишера]</ref> в зависимости от функции расстояния между кластерами
|-
| style="padding:5px;" |[[Файл:hierarchy_min.png|350px|Расстояние минимума.]]
| style="padding:5px;" |[[Файл:hierarchy_max.png|350px|Расстояние максимума.]]
|-
| style="text-align:center;" | Метод одиночной связи
| style="text-align:center;" | Метод полной связи
|-
| style="padding:5px;" |[[Файл:hierarchy_avg.png|350px|Расстояние среднего.]]
| style="padding:5px;" |[[Файл:hierarchy_ward.png|350px|Расстояние Уорда.]]
|-
| style="text-align:center;" | Метод средней связи
| style="text-align:center;" | Метод Уорда
|}
 
Лучше всего с задачей справился алгоритм с использованием расстояния Уорда. Он точно выделил класс ''Iris setosa'' и заметно отделил вид ''Iris virginica'' от ''Iris versicolor''.
== См. также ==
* [[Оценка_качества_в_задаче_кластеризации|Оценка качества в задаче кластеризации]]* [[EM-алгоритм|EM-алгоритм]]<sup>[на 1428.1201.18 не создан]</sup>* [[EMИерархическая_кластеризация|Иерархическая кластеризация]]* [[k-алгоритмсредних|EM<tex>\mathrm{k}</tex>-алгоритмсредних]]<sup>[на 1428.1201.18 не создан]</sup>
== Примечания ==
* [https://en.wikipedia.org/wiki/Cluster_analysis Wikipedia {{---}} Cluster analysis]
* [http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BB%D0%B0%D1%81%D1%82%D0%B5%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F MachineLearning {{---}} Кластеризация]
* [https://ru.wikipedia.org/wiki/%D0%98%D0%B5%D1%80%D0%B0%D1%80%D1%85%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BA%D0%BB%D0%B0%D1%81%D1%82%D0%B5%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F Википедия {{---}} Иерархическая кластеризация]
* [https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html Scipy Documentation {{---}} Hierarchical clustering (scipy.cluster.hierarchy)]
* [http://www.machinelearning.ru/wiki/images/c/ca/Voron-ML-Clustering.pdf К.В.Воронцов Лекции по алгоритмам кластеризации и многомерного шкалирования]
* G[https://www. Ncs. Lance, Wcornell. Tedu/home/kleinber/nips15. Williams; A General Theory of Classificatory Sorting Strategies: 1pdf Kleinberg J. Hierarchical Systems, The Computer Journal, Volume 9, Issue 4, 1 February 1967, Pages 373–380An Impossibility Theorem for Clustering]
[[Категория: Машинное обучение]]
[[Категория: Кластеризация]]
77
правок

Навигация