Комплексное евклидово пространство — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Неравенство Шварца(Коши-Буняковского))
Строка 30: Строка 30:
 
==Неравенство Шварца(Коши-Буняковского)==
 
==Неравенство Шварца(Коши-Буняковского)==
 
{{Теорема
 
{{Теорема
 +
|statement= <tex>\forall\: x,y\in \mathbb{C}:\;|\left\langle x,y\right\rangle _{G}|\leq\Vert x\Vert_{G}\cdot\Vert y\Vert_{G}</tex>
 +
|proof=
 +
Рассмотрим <tex>\left\langle \lambda x+y;\lambda x+y\right\rangle =\Vert\lambda x+y\Vert^{2}\geq0</tex>, где <tex>\lambda \in \mathbb{R}</tex>
 +
 +
<tex>\left\langle \lambda x+y;\lambda x+y\right\rangle = \left\langle \lambda x;\lambda x\right\rangle +\left\langle \lambda x;y\right\rangle +\left\langle y;\lambda x\right\rangle +\left\langle y;y\right\rangle =</tex>
 +
 +
<tex>= \lambda\cdot\overline{\lambda}\left\langle x,x\right\rangle +\lambda\cdot(\left\langle x;y\right\rangle +\overline{\left\langle x;y\right\rangle })+\left\langle y,y\right\rangle =</tex>
 +
<tex>= \Vert x\Vert^{2}\cdot\lambda^{2}+\lambda\cdot 2Re\left\langle x;y\right\rangle + \Vert y\Vert^{2}\geq0</tex>
 
}}
 
}}

Версия 16:22, 12 июня 2013

//статья в разработке//

Определение:
Пусть [math]E[/math] - линейное пространство над [math]\mathbb{C}[/math]

В [math]E[/math] задана эрмитова метрическая форма, т.е [math]G:\: E\times E\longrightarrow \mathbb{C}[/math] co свойствами:

[math]1)\: G(\alpha x_{1}+\beta x_{2};y)=\alpha G(x_{1},y)+\beta G(x_{2},y)[/math], где [math]\alpha[/math] , [math]\beta[/math] - комплексные числа

[math]2)\: G(x,y)=\overline{G(y,x)}[/math]; [math]G(x,x)=\overline{G(x,x)} \Longrightarrow G(x,x) \in \mathbb{R}[/math]

[math]3)\: G(x,y) \ge 0;\: G(x,y)=0 \Longleftrightarrow x = 0_{E}[/math]

NB 1: [math]G[/math] полуторалинейна: [math]G(x;\alpha y_{1}+\beta y_{2})=\overline{\alpha}G(x,y_{1})+\overline{\beta}G(x,y_{2})[/math]

NB 2: [math]G(x,y)=\left\langle x,y\right\rangle _{G}; x,y \in E([/math]над [math] \mathbb{C})[/math]

NB 3: [math]G(x,y)=\left\langle x,y\right\rangle _{G}[/math]

[math]\Vert x\Vert_{G}=\sqrt{\left\langle x,x\right\rangle _{G}}; \:\Vert\alpha x\Vert_{G}=\sqrt{\left\langle \alpha x,\alpha x\right\rangle _{G}}=\sqrt{\alpha\cdot\overline{\alpha}\cdot\left\langle x,x\right\rangle _{G}}=|\alpha|\cdot\Vert x\Vert_{G} [/math]

Примеры

[math]E = \mathbb{C}^{n}[/math] [math]\left\langle x,y\right\rangle =\sum_{i=1}^{n}\xi^{i}\overline{\eta^{i}}[/math]

[math]\left\langle y,x\right\rangle =\sum_{i=1}^{n}\eta^{i}\overline{\xi^{i}}=\overline{\sum\overline{\eta^{i}}\xi^{i}}=\overline{\left\langle x,y\right\rangle }[/math]; [math]\left\langle x,x\right\rangle =\sum_{i=1}^{n}\xi^{i}\overline{\xi^{i}}=\sum_{i=1}^{n}|\xi^{i}|^{2}\gt 0[/math]

Неравенство Шварца(Коши-Буняковского)

Теорема:
[math]\forall\: x,y\in \mathbb{C}:\;|\left\langle x,y\right\rangle _{G}|\leq\Vert x\Vert_{G}\cdot\Vert y\Vert_{G}[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим [math]\left\langle \lambda x+y;\lambda x+y\right\rangle =\Vert\lambda x+y\Vert^{2}\geq0[/math], где [math]\lambda \in \mathbb{R}[/math]

[math]\left\langle \lambda x+y;\lambda x+y\right\rangle = \left\langle \lambda x;\lambda x\right\rangle +\left\langle \lambda x;y\right\rangle +\left\langle y;\lambda x\right\rangle +\left\langle y;y\right\rangle =[/math]

[math]= \lambda\cdot\overline{\lambda}\left\langle x,x\right\rangle +\lambda\cdot(\left\langle x;y\right\rangle +\overline{\left\langle x;y\right\rangle })+\left\langle y,y\right\rangle =[/math]

[math]= \Vert x\Vert^{2}\cdot\lambda^{2}+\lambda\cdot 2Re\left\langle x;y\right\rangle + \Vert y\Vert^{2}\geq0[/math]
[math]\triangleleft[/math]