Изменения

Перейти к: навигация, поиск

Корреляция случайных величин

231 байт добавлено, 21:52, 4 марта 2018
м
Fix ticket
== Определение ==
{{Определение
|definition=
<b>Корреляция случайных величинСреднеквадратичным отклонением</b>(англ. ''standart deviation'') <tex>\sigma_{\eta}</tex> называется величина, равная квадратному корню из [[Дисперсия_случайной_величины | дисперсии]] случайной величины <tex>\eta</tex>: пусть <tex>\sigma_{\eta}=\sqrt{D(\eta)}</tex>}}{{Определение|definition=Пусть <tex>\eta,\xi</tex> {{---}} две [[Дискретная_случайная_величина | случайные величины]], определённые на одном и том же вероятностном пространстве. Тогда их корреляция определяется следующим образом<b> корреляцией случайных величин </b> (англ. correlation) <tex>\eta</tex> и <tex>\xi</tex> называется выражение следующего вида:: <tex dpi = "150">\mathrm{Corr}(\eta,\xi)=\dfrac{\mathrm{Cov}(\eta,\xi) \over }{\sigma_{\eta} \times \sigma_{\xi}}</tex>, где <tex>\sigma_{\eta}=\sqrtmathrm{D(\eta)Cov}</tex> называется среднеквадратичным отклонением и равно квадратному корню из [[Дисперсия_случайной_величины | дисперсии]], а <tex>Cov(\eta,\xi)</tex> {{-- -}} [[Ковариация_случайных_величин | ковариацией ковариация случайных величин]].
}}
== Вычисление ==
Заметим, что <tex>\sigma_{\xi} = \sqrt{D(\xi)} = E\big((\xi-E(\xi))^2\big)</tex>{{---}} среднеквадратичное отклонение.: <tex dpi = "150">\mathrm{Corr}(\eta,\xi)=\dfrac{\mathrm{Cov}(\eta,\xi) \over }{\sigma_{\eta} \times \sigma_{\xi}} = \dfrac{E\big((\eta-E\eta)(\xi-E\xi)\big) \over }{{\sqrt{D(\eta)} \times \sqrt{D(\xi)}}} =\dfrac{E(\xi \times \eta) - E(\xi) \times E(\eta) \over }{{\sigma_{\eta} \times \sigma_{\xi}}}</tex> == Корреляция и взаимосвязь величин ==Значительная корреляция между случайными величинами всегда означает, что присутствует некая взаимосвязь между значениями конкретной выборки, но при другой выборке связь вполне может отсутствовать. Поэтому при нахождении взаимосвязи не нужно делать поспешных выводов о причинно-следственном характере величин, а следует рассмотреть наиболее полную выборку, чтобы делать какие-либо выводы. Коэффициенты корреляции устанавливают лишь статистические взаимосвязи, но не более того.
== Свойства корреляции ==
|statement=
Корреляция симметрична:
: <tex>\mathrm{Corr}(\eta,\xi) = \mathrm{Corr}(\xi,\eta)</tex>.
|proof=
: <tex dpi = "150">\mathrm{Corr}(\eta,\xi) = \dfrac{ E(\eta \times \xi) - E(\eta) \times E(\xi) \over }{\sqrt{D(\eta)} \times \sqrt{D(\xi)} } = \dfrac{ E(\xi \times \eta) - E(\xi) \times E(\eta) \over }{\sqrt{D(\xi)} \times \sqrt{D(\eta)} } = \mathrm{Corr}(\xi,\eta)</tex>.
}}
{{Утверждение
|statement=
Корреляция лежит на отрезке случайной величины с собой равна <tex>[-1, 1]</tex>:.
|proof=
Для доказательства используем свойства ковариации: <tex>Cov^2\mathrm{Corr}(\eta, \xieta) = \le dfrac{ E(\sigma_eta \eta ^2) - E(\sigma_eta) E(\eta)}{\xi ^2</tex>из этого выходит <tex> sqrt{Cov^2D(\eta,\xi)} \oversqrt{D(\sigma_\eta ^2)} } = \sigma_dfrac{D(\xi ^2eta)} {D(\le eta)} = 1</tex> }}
при условии{{Утверждение|statement=Корреляция лежит на отрезке <tex>[-1, конечно, что знаменатель не обращается в нуль1]</tex>.
<tex>Corr^2(\eta,\xi) \le 1</tex>
<tex>-1 \le Corr(\eta,\xi) \le 1</tex>
}}
{{Утверждение
|statement=
Если <tex> \mathrm{Corr}(\eta, \xi) = \pm 1 </tex>, то <tex>\eta</tex> и <tex>\xi</tex> линейно зависимые |proof=Для доказательство используем доказательство свойства ковариации. Так как у нас <tex> Corr(\eta, \xi) = \pm 1 </tex>то это обозначает что <tex>Cov^2(\eta,\xi) = \sigma_\eta ^2\sigma_\xi ^2</tex>равенство на этом неравенстве <tex>\sigma_\xi ^2t^2+2Cov(\eta,\xi)t+\sigma_\eta ^2 \ge 0</tex> выполняется только при условии что дискриминант равен нулю т.е. имеет один корень <tex> t_0 </tex>зависимы.
Из этого выходят <tex> E((\xi-E\xi +t_0 \eta - t_0 E\eta))=E((V + t_0 W)^2) = 0 </tex>
единственная случая это может произойти, если <tex> \xi-E\xi +t_0 \eta - t_0 E\eta = 0</tex>;
Ясно что <tex>\eta</tex> и <tex>\xi</tex> линейно зависимы.
}}
{{Утверждение
|statement=
Если <tex>\eta</tex> и <tex>\xi</tex> линейно зависимы , то <tex>\mathrm{Corr}(\eta, \xi)= \pm 1 </tex>. |proof=Предположим что <tex>\xi = k \eta + b</tex>.Потом, мы имеем что <tex>E\xi=kE\eta + b</tex>; и так<tex> Cov(\eta, \xi) = E((\eta - E\eta)(\xi - E\xi))=kE((\eta-E\eta)^2)=k\sigma_\eta ^2 </tex>. Кроме того, по свойствам дисперсии,<tex> \sigma_\xi ^2 = D[\xi] = E((\xi-E\xi)^2)= k^2 E((\eta-E\eta)^2)= k^2 \sigma_\eta ^2 </tex>
Из этого следует, что
<tex>Corr(\eta, \xi)= {Cov(\eta, \xi)\over \sigma_\eta \sigma_\xi}={k\over |k|}</tex>,
ясно что это равно на <tex>\pm 1</tex>, знак зависит от знака <tex>k</tex>.
}}
{{Утверждение
|statement=
Если <tex>\eta,\xi</tex> независимые случайные величины, то: <tex>\mathrm{Corr}(\eta,\xi) = 0</tex>.
|proof=
Пусть <tex>\eta</tex> и <tex>\xi</tex> {{-- -}} [[Независимые_случайные_величины|независимые величины]]. Тогда <tex>E(\eta \times \xi)=E(\eta) \times E(\xi)</tex>, где <tex>E</tex> {{--- }} их [[Математическое_ожидание_случайной_величины|математическое ожидание]]. Получаем:: <tex dpi >\mathrm{Corr}(\eta, \xi) = "150">\dfrac{E(\xi) \times E(\eta) - E(\xi) \times E(\eta) \over }{{E\big((\eta-E(\eta))^2\big) \times E\big((\xi-E(\xi))^2\big)}} = 0</tex>
<b>Но обратное неверно:</b>
Пусть <tex>\eta</tex> {{- --}} [[Дискретная_случайная_величина|случайная величина]], распределенная симметрично около <tex>0</tex>, а <tex>\xi=\eta^2</tex>. <tex>\mathrm{Corr}(\eta,\xi)=0</tex>, но <tex>\eta</tex> и <tex>\xi</tex> {{--- }} зависимые величины.
}}
== Примеры ==
В общем смысле корреляция {{- --}} это зависимость между случайными величинами, когда изменение одной влечет изменение распределения другой.
=== Определение корреляции по диаграмме ===
[[Файл:Пример_графиков_корреляции.png|600px|thumb|right|3 диаграммы рассеивания двух случайных величин <tex>X </tex> и <tex>Y</tex>]] 1. Соответственно, на '''первом графике''' изображена '''положительная корреляция''', когда увеличение Y ведет к постепенному увеличению X. 2. '''Второй график''' отображает '''отрицательную корреляцию''', когда увеличение X воздействует на постепенное уменьшение Y.
3#Соответственно, на '''первом графике''' изображена '''положительная корреляция''', когда увеличение <tex>Y</tex> ведет к постепенному увеличению <tex>X</tex>.#'''Второй график''' отображает '''отрицательную корреляцию''', когда увеличение <tex>X</tex> воздействует на постепенное уменьшение <tex>Y</tex>. #'''Третий график''' показывает, что <tex>X </tex> и <tex>Y </tex> связаны слабо, их распределение не зависит от изменения друг друга, поэтому корреляция между ними будет '''равна <tex>0</tex>'''.
=== Определение корреляции по таблице ===
Рассмотрим <tex>2 </tex> случайные величины: курс акций нефтедобывающей компании (<tex>X</tex>) и цены на нефть (<tex>Y</tex>).
{| borderclass="1wikitable"
|-
! X || <tex>2003,6 </tex> || <tex>2013,2 </tex> || <tex>2007,6 </tex> || <tex>2007,4 </tex> || <tex>2039,9 </tex> || <tex>2025 </tex> || <tex>2007 </tex> || <tex>2017 </tex> || <tex>2015,6 </tex> || <tex>2011</tex>
|-
! Y || <tex>108,4 </tex> || <tex>107,96 </tex> || <tex>108,88 </tex> || <tex>110,44 </tex> || <tex>110,2 </tex> || <tex>108,97 </tex> || <tex>109,15 </tex> || <tex>108,8 </tex> || <tex>111,2 </tex> || <tex>110,23</tex>
|-
|}
Для упрощения вычислений определим <tex>X </tex> и <tex>Y </tex> как равновероятные случайные величины. Тогда их математическое ожидание и дисперсию легко посчитать:
<tex>E(X) = 2014,73</tex>
<tex>D(Y) = 0,959661</tex>
Используя формулу, <tex dpi = "150">\mathrm{Corr}(\eta,\xi)=\dfrac{E(\xi \times \eta) - E(\xi) \times E(\eta) \over }{{\sigma_{\eta} \times \sigma_{\xi}}}</tex> определяем, что корреляция между величинами <tex>X </tex> и <tex>Y </tex> составляет <tex>0,240935496</tex>, т.е. то есть <tex>24\%</tex>== См. также ==*[[Дисперсия случайной величины|Дисперсия случайной величины]]*[[Ковариация случайных величин|Ковариация случайных величин]]
== Ссылки Источники информации ==
* [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F Википедия {{---}} Корреляция]
* [http://en.wikipedia.org/wiki/Correlation_and_dependence Wikipedia {{---}} Correlation and dependence]
286
правок

Навигация