Изменения

Перейти к: навигация, поиск

Красно-черное дерево

31 421 байт добавлено, 19:17, 4 сентября 2022
м
rollbackEdits.php mass rollback
[[Файл:Rbtree.JPG‎|350px|thumb|Пример красно-чёрного дерева.]]'''Красно - чёрное дерево''' (англ. ''red-black tree'') {{- самобалансирующееся --}} двоичное дерево поиска, в котором баланс осуществляется на основе "цвета" узла дерева, который принимает только два значения: "красный" (англ. ''red'') и "чёрный"(англ. ''black'').[[Файл:RBT.jpg‎|350px|thumb|Пример красно-чёрного дерева.]]При этом все листья дерева являются фиктивными и не содержат данных, но относятся к дереву и являются чёрными. Для экономии памяти фиктивные листья можно сделать одним общим фиктивным листом.
== Свойства ==
===Оригинальные===Красно-чёрным называется бинарное поисковое дерево, у которого каждому узлу сопоставлена сопоставлен дополнительный аттрибут – атрибут {{---}} цвет и для которого выполняются следующие свойства:
# Каждый узел промаркирован красным или чёрным цветом
# Корень и конечные узлы (листья) дерева {{---}} чёрные# У красного узла родительский узел {{---}} чёрный# Все простые пути из любого узла x до листьев содержат одинаковое количество чёрных узлов – black-height(x)
# Чёрный узел может иметь чёрного родителя
[[Файл:konspv2.jpg‎|350px|thumb|Ослабленное красно-чёрное дерево.]]
 
Определим ослабленное красно-чёрное дерево как красно-чёрное дерево, корень которого может быть как чёрным, так и красным. Докажем, что при таком условии не будут выполняться и некоторые другие свойства красно-черных деревьев. При добавлении вершины около корня могут возникнуть повороты, и корневая вершина перейдет в какое-то поддерево. Из-за этого может возникнуть ситуация, в которой подряд будут идти две красные вершины. То же самое может произойти из-за перекрашиваний возле корня. Если мы продолжим вставлять элементы подобным образом, свойства дерева перестанут выполняться, и оно перестанет быть сбалансированным. Таким образом, время выполнения некоторых операций ухудшится.
 
Перед тем, как перейдем к примеру, договоримся, что мы разрешим в ослабленном красно-чёрном дереве при первом добавлении вершин (обеих, правой и левой) к красному корню делать их черными (немного модифицированный алгоритм вставки). Предыдущее условие можно заменить на другое, позволяющее корню иметь красных детей.
 
Рассмотрим пример справа. Получим такое дерево добавляя ключи в следующем порядке: $10$, $6$, $45$, $4$, $8$. На примере можно видеть, что после добавления вершины с ключом <tex>0</tex> и соответствующих перекрашиваний вершина с ключом <tex>6</tex> становится красной с красным родителем. Дальше добавим <tex>5</tex>. Так как мы добавляем к черной вершине, все свойства дерева сохраняются без перекрашиваний. Но добавим после этого <tex>(-3)</tex>. Тогда вершина с ключом <tex>4</tex> станет красной (<tex>0</tex> и <tex>5</tex> {{---}} черными) и у нас образуются три красные вершины подряд. Продолжая добавлять вершины таким образом, мы можем сделать сильно разбалансированное дерево.
 
===Альтернативные===
В книге Кормена "Алгоритмы: построение и анализ" дается немного иное определение красно-черного дерева, а именно:
 
Двоичное дерево поиска является красно-чёрным, если обладает следующими свойствами:
# Каждая вершина {{---}} либо красная, либо черная
# Каждый лист {{---}} черный
# Если вершина красная, оба ее ребенка черные
# Все пути, идущие от корня к листьям, содержат одинаковое количество черных вершин
 
То, что только черная вершина может иметь красных детей, совместно с <tex>4</tex>-ым свойством говорит о том, что корень дерева должен быть черным, а значит определения можно считать эквивалентными.
== Высота красно-черного дерева ==
{{Теорема Определение|statementdefinition=КрасноБудем называть '''чёрной высотой''' (англ. ''black-чёрное дерево с height'') вершины <tex>nx</tex> ключами имеет высоту число чёрных вершин на пути из <tex>h \geqslant \log(n + 1) = O(\log n)x</tex>в лист.||proof=Схема доказательства:}}
# Совмещаем все красные узлы с родительскими чёрными (они существуют по свойству 2) начиная с корня# В результате получим дерево, каждый узел котрого имеет 2, 3 или 4 потомка{{Лемма# |statement= В следствии свойства 4 красно-чёрного дерева, все листья черном дереве с черной высотой <tex>hb</tex> количество внутренних вершин не менее <tex>2^{hb-31}-4 дерева будут иметь одинаковую глубину – black-height корня исходного дерева1</tex>.|proof=# Пусть дерево из п.2 имеет высоту Докажем по индукции по обычной высоте $h(x)$, что поддерево любого узла <tex>h'x</tex>. Тогда с черной высотой <tex>h' \geqslant hhb(x)</tex> содержит не менее <tex>2^{hb(x)-1} - 1</tex>, твнутренних узлов.кЗдесь $h(x)$ {{---}} кратчайшее расстояние от вершины $x$ до какого-то из листьев. не более половины узлов на каждом пути – красные
[[Файл'''База индукции:2-3-4_tree.JPG‎|350px|]]'''
# Количество листьев не изменяется и равно Если высота узла <tex>x</tex> равна <tex>n + 1</tex> для обоих деревьев, т.к. в красното <tex>x</tex> {{-чёрном дереве все внутренние узлы имеют ровно два листа6. В 2-3-4 дереве высоты }} это лист, <tex>h'hb(x) = 1</tex> количество листьев , <tex>n + 2^{1-1} - 1= 0</tex> ограничено:.
<tex>2^{h'} \leqslant n + 1 \leqslant 4^{h'}</tex>'Переход:'''
# Так как любая внутренняя вершина (вершина, у которой высота положительна) имеет двух потомков, то применим предположение индукции к ним {{---}} их высоты на единицу меньше высоты $x$.Тогда:черные высоты детей могут быть $hb(x)$ или $hb(x)-1$ {{---}} если потомок красный или черный соответственно.
<tex>n Тогда по предположению индукции в каждом из поддеревьев не менее $2^{hb(x)-2}-1$ вершин. Тогда всего в поддереве не менее $2\cdot(2^{hb(x)-2}-1)+ 1 \geqslant = 2^{h'hb(x)-1}-1$ вершин ($+1$ {{---}}</tex>мы учли еще саму вершину $x$).
<tex>\log(n + Переход доказан.Теперь, если мы рассмотрим корень всего дерева в качестве $x$, то получится, что всего вершин в дереве не менее $2^{hb-1) \geqslant h' \geqslant h/2</tex>}-1$.
<tex>h \leqslant 2\log(n + 1)</tex>Следовательно, утверждение верно и для всего дерева.
}}
{{Теорема
|statement=Красно-чёрное дерево с <tex>N</tex> ключами имеет высоту <tex>h = O(\log N)</tex>.
|proof=
Рассмотрим красно-чёрное дерево с высотой <tex>h</tex>. Так как у красной вершины чёрные дети (по свойству $3$) количество красных вершин не больше $\dfrac{h}{2}$.
Тогда чёрных вершин не меньше, чем <tex>\dfrac{h}{2} - 1</tex>.
 
По доказанной лемме, для количества внутренних вершин в дереве <tex>N</tex> выполняется неравенство:
 
<tex>N \geqslant 2^{h/2}-1</tex>
 
Прологарифмировав неравенство, имеем:
 
<tex>\log(N+1) \geqslant \dfrac{h}{2}</tex>
 
<tex>2\log(N+1) \geqslant h</tex>
 
<tex>h \leqslant 2\log(N+1)</tex>
 
}}
== Операции ==
Узел, с которым мы работаем, на картинках имеет имя <tex>x</tex>.
=== Вставка элемента ===
Каждый элемент вставляется вместо листа, поэтому для выбора места вставки идём от корня до тех пор, пока указатель на следующего сына не станет <tex>nil</tex> (т.е. то есть этот сын {{- --}} лист). Вставляем вместо него новый элемент с nil-нулевыми потомками и красным цветом. Теперь проверяем балансировку. Если отец нового элемента черный, то никакое из свойств дерева не нарушено. Если же он красный, то нарушается свойство <tex>3</tex>, для исправления достаточно рассмотреть только два случая:# "Дядя" этого узла тоже красный. Тогда, чтобы сохранить свойства <tex>3</tex> и <tex>4</tex>, просто перекрашиваем "отца" и "дядю" в чёрный цвет, а "деда" {{---}} в красный. В таком случае черная высота в этом поддереве одинакова для всех листьев и у всех красных вершин "отцы" черные. Проверяем, не нарушена ли балансировка. Если в результате этих перекрашиваний мы дойдём до корня, то в нём в любом случае ставим чёрный цвет, чтобы дерево удовлетворяло свойству <tex>2</tex>. [[Файл:Untitled-1.png|200px]]# "Дядя" чёрный. Если выполнить только перекрашивание, то может нарушиться постоянство чёрной высоты дерева по всем ветвям. Поэтому выполняем поворот. Если добавляемый узел был правым потомком, то необходимо сначала выполнить левое вращение, которое сделает его левым потомком. Таким образом, свойство <tex>3</tex> и постоянство черной высоты сохраняются.
1. "Дядя" этого узла тоже красный. Тогда просто перекрашиваем "отца" и "дядю" в чёрный цвет, а "деда" [[Файл:Untitled- в красный. Проверяем, не нарушает ли он теперь балансировку. Если в результате этих перекрашиваний мы дойдём до корня, то в нём в любом случае ставим чёрный цвет2. png|250px|]]
[[Файл'''Псевдокод:D_1''' '''func''' insert(key) Node t = Node(key, red, ''nil'', ''nil'') <font color=green>// конструктор, в который передаем ключ, цвет, левого и правого ребенка </font> '''if''' дерево пустое root = t t.png|200px|]]parent = ''nil'' '''else''' Node p = root Node q = ''nil'' '''while''' p != ''nil'' <font color=green>// спускаемся вниз, пока не дойдем до подходящего листа </font> q = p '''if''' p.key < t.key p = p.right '''else''' p = p.left t.parent = q <font color=green>// добавляем новый элемент красного цвета </font> '''if''' q.key < t.key q.right = t '''else''' q.left = t fixInsertion(t) <font color=green>// проверяем, не нарушены ли свойства красно-черного дерева </font>
2. '''func''' fixInsertion(t: '''Node''') '''if''' t {{---}} корень t = black '''return''' <font color=green>// далее все предки упоминаются относительно t </font> '''while''' "отец" красный <font color=green>// нарушается свойство <tex>3</tex> </font> '''if''' "отец" {{---}} левый ребенок '''if''' есть красный "дядя" parent = black uncle = black grandfather = red t = grandfather '''else''' '''if''' t {{---}} правый сын t = parent leftRotate(t) parent = black grandfather = red rightRotate(grandfather) '''else''' <font color=green>// "отец" {{---}} правый ребенок </font> '''if''' есть красный "дядя" parent = black uncle = black grandfather = red t = grandfather '''else''' <font color=green>// нет "Дядядяди" чёрный. Если выполнить только перекрашивание, то может нарушиться постоянство чёрной высоты дерева по всем ветвям. Поэтому выполняем поворот. Если добавляемый узел был правым потомком, то необходимо сначала выполнить левое вращение, которое сделает его левым потомком</font> '''if''' t {{---}} левый ребенок t = t.parent rightRotate(t) parent = black grandfather = red leftRotate(grandfather)[[Файл:D_2.png|275px|]] root = black <font color=green>// восстанавливаем свойство корня </font>
=== Удаление вершины ===
При удалении вершины могут возникнуть три случая в зависимости от количества её детей:
# * Если у вершины нет детей, то изменяем указатель на неё у родителя на <tex>nil</tex>.# * Если у неё только один ребёнок, то делаем у родителя ссылку на него вместо этой вершины.# * Если же имеются оба ребёнка, то находим вершину со следующим значением ключа. У такой вершины нет левого ребёнка(так как такая вершина находится в правом поддереве исходной вершины и она самая левая в нем, иначе бы мы взяли ее левого ребенка. Иными словами сначала мы переходим в правое поддерево, а после спускаемся вниз в левое до тех пор, пока у вершины есть левый ребенок). Удаляем уже эту вершину описанным во втором пункте способом, скопировав её ключ в изначальную вершину.Проверим балансировку дерева. Т.к. Так как при удалении красной вершины свойства дерева не нарушаются, то восстановление балансировки потребуется только при удалении чёрной. Рассмотрим ребёнка удалённой вершины. * Если брат этого ребёнка красный, то делаем вращение вокруг ребра между отцом и братом, тогда брат становится родителем отца. Красим его в чёрный, а отца {{---}} в красный цвет, сохраняя таким образом черную высоту дерева. Хотя все пути по-прежнему содержат одинаковое количество чёрных узлов, сейчас <tex>x</tex> имеет чёрного брата и красного отца. Таким образом, мы можем перейти к следующему шагу. *:*:[[Файл:Untitled-3.png|400px|]]*:* Если брат текущей вершины был чёрным, то получаем три случая:** Оба ребёнка у брата чёрные. Красим брата в красный цвет и рассматриваем далее отца вершины. Делаем его черным, это не повлияет на количество чёрных узлов на путях, проходящих через <tex>b</tex>, но добавит один к числу чёрных узлов на путях, проходящих через <tex>x</tex>, восстанавливая тем самым влиянние удаленного чёрного узла. Таким образом, после удаления вершины черная глубина от отца этой вершины до всех листьев в этом поддереве будет одинаковой.**:**:[[Файл:Untitled-4.png|400px|]]**:** Если у брата правый ребёнок чёрный, а левый красный, то перекрашиваем брата и его левого сына и делаем вращение. Все пути по-прежнему содержат одинаковое количество чёрных узлов, но теперь у <tex>x</tex> есть чёрный брат с красным правым потомком, и мы переходим к следующему случаю. Ни <tex>x</tex>, ни его отец не влияют на эту трансформацию.**:**:[[Файл:Untitled-5.png|400px|]]**:** Если у брата правый ребёнок красный, то перекрашиваем брата в цвет отца, его ребёнка и отца {{---}} в чёрный, делаем вращение. Поддерево по-прежнему имеет тот же цвет корня, поэтому свойство <tex>3</tex> и <tex>4</tex> не нарушаются. Но у <tex>x</tex> теперь появился дополнительный чёрный предок: либо <tex>a</tex> стал чёрным, или он и был чёрным и <tex>b</tex> был добавлен в качестве чёрного дедушки. Таким образом, проходящие через <tex>x</tex> пути проходят через один дополнительный чёрный узел. Выходим из алгоритма.**:**: [[Файл:Untitled-6.png|400px|]] Продолжаем тот же алгоритм, пока текущая вершина чёрная и мы не дошли до корня дерева.Из рассмотренных случаев ясно, что при удалении выполняется не более трёх вращений. '''Псевдокод:''' '''func''' delete(key) Node p = root <font color=green>// находим узел с ключом key</font> '''while''' p.key != key '''if''' p.key < key p = p.right '''else''' p = p.left '''if''' у p нет детей '''if''' p {{---}} корень root = ''nil'' '''else''' ссылку на p у "отца" меняем на ''nil'' '''return''' Node y = ''nil'' Node q = ''nil'' '''if''' один ребенок ссылку на у от "отца" меняем на ребенка y '''else''' <font color=green>// два ребенка</font> y = вершина, со следующим значением ключа <font color=green>// у нее нет левого ребенка </font> '''if''' y имеет правого ребенка y.right.parent = y.parent '''if''' y {{---}} корень root = y.right '''else''' у родителя ссылку на y меняем на ссылку на первого ребенка y '''if''' y != p p.colour = y.colour p.key = y.key '''if''' y.colour == black <font color=green>// при удалении черной вершины могла быть нарушена балансировка</font> fixDeleting(q)   '''func''' fixDeleting(p: '''Node''') <font color=green>// далее родственные связи относительно p</font> '''while''' p {{---}} черный узел и не корень '''if''' p {{---}} левый ребенок '''if''' "брат" красный brother = black parent = red leftRotate(parent) '''if''' у "брата" черные дети <font color=green>// случай <tex>1:</tex> "брат" красный с черными детьми</font> brother = red '''else''' '''if''' правый ребенок "брата" черный <font color=green>// случай, рассматриваемый во втором подпункте:</font> brother.left = black <font color=green>// "брат" красный с черными правым ребенком</font> brother = red rightRotate(brother) brother.colour = parent.colour <font color=green>// случай, рассматриваемый в последнем подпункте</font> parent = black brother.right = black leftRotate(parent) p = root '''else''' <font color=green>// p {{---}} правый ребенок</font> <font color=green>// все случаи аналогичны тому, что рассмотрено выше</font> '''if''' "брат" красный brother = black parent = red rightRotate(p.parent) '''if''' у "брата" черные дети brother = red '''else''' '''if''' левый ребенок "брата" черный brother.right = black brother = red leftRotate(brother); brother = parent parent = black brother.left = black rightRotate(p.parent) p = root p = black root = black === Объединение красно-чёрных деревьев ===Объединение двух красно-чёрных деревьев <tex>T_{1}</tex> и <tex>T_{2}</tex> по ключу <tex>k</tex> возвращает дерево с элементами из $T_2$, $T_1$ и $k$. Требование: ключ $k$ {{---}} разделяющий. То есть $\forall k_1\in T_1, k_2 \in T_2: k_1\leqslant k\leqslant k_2$. Если оба дерева имеют одинаковую черную высоту, то результатом будет дерево с черным корнем $k$, левым и правым поддеревьями $k_1$ и $k_2$ соответствено. Теперь пусть у $T_1$ черная высота больше (иначе аналогично). * Находим в дереве $T_1$ вершину $y$ на черной высоте, как у дерева $T_2$ вершину с максимальным ключом. Это делается несложно (особенно если мы знаем черную высоту дерева): спускаемся вниз, поддерживая текущую черную высоту.*:Идем вправо. Когда высота станет равной высоте $T_2$, остановимся.*:Заметим, что черная высота $T_2\geqslant 2$. Поэтому в дереве $T_1$ мы не будем ниже, чем $2$. Пусть мы не можем повернуть направо (сын нулевой), тогда наша высота $2$ (если мы в черной вершине) или $1$ (если в красной). Второго случая быть не может, ибо высота $T_2\geqslant 2$, а в первом случае мы должны были завершить алгоритм, когда пришли в эту вершину.*:Очевидно, мы окажемся в черной вершине (ибо следующий шаг даст высоту меньше). Очевидно, мы оказались на нужной высоте.*:Теперь пусть мы попали не туда. То есть существует путь от корня до другой вершины. Посмотрим на то место, где мы не туда пошли. Если мы пошли вправо, а надо бы влево, то $x$ имеет больший ключ (по свойству дерева поиска). А если пошли влево, а не вправо, значит правого сына и нет (точнее, есть, но он нулевой), значит в правом поддереве вообще нет вершин.*:Более того, все вершины с высотами меньше $y$, которые имеют ключ больше $y$, будут находиться в поддереве $y$. Действительно, мы всегда идем вправо. Инвариант алгоритма на каждом шаге {{---}} в поддереве текущей вершины содержатся все вершины, ключ которых больше текущего. Проверяется очевидно.*:Еще поймем, как будем хранить черную высоту дерева. Изначально она нулевая (в пустом дереве). Далее просто поддерживаем ее при операциях вставки и удаления.* Объединим поддерево. $k$ будет корнем, левым и правым сыновьями будут $T_y$ и $T_2$ соответственно.*:Покажем, что свойства дерева поиска не нарушены.*:Так как все ключи поддерева $y$ не более $k$ и все ключи $T_2$ не менее $k$, то в новом поддереве с корнем $k$ свойства выполняются.*:Так как $k$ больше любого ключа из $T_1$, то выполняется и для всего дерева.* Красим $k$ в красный цвет. Тогда свойство $4$ будет выполнено. Далее поднимаемся вверх, как во вставке операциях, поворотами исправляя нарушение правила $3$.* В конце корень красим в черный, если до этого был красный (это всегда можно сделать, ничего не нарушив).  '''Псевдокод:''' '''func''' join(T_1, T_2, k) '''if''' черные высоты равны return Node(k, black, T_1, T_2) '''if''' высота T_1 больше T' = joinToRight(T_1, T_2, k) T'.color = black return T' '''else''' T' = joinToLeft(T_1, T_2, k) T'.color = black return T' '''func''' joinToRight(T_1, T_2, k) Y = find(T_1, bh(T_2)) T' = Node(k, red, Y, T_2) '''while''' нарушение действуем как во вставке return T' '''func''' find(T, h) curBH = bh(T) curV = T '''while''' curBH != h curV = curV.right '''if''' curV.color == black --curBH return curV Сложность: $\mathcal{O}(T_1.h-T_2.h)=\mathcal{O}(\log(n))$ === Разрезание красно-чёрного дерева ===Разрезание дерева по ключу $k$ вернет два дерева, ключи первого меньше $k$, а второго {{---}} не меньше. Пройдем вниз как во время поиска. Все левые поддеревья вершин пути, корень которых не в пути, будут в первом поддереве. Аналогично правые {{---}} в правом.Теперь поднимаемся и последовательно сливаем деревья справа и слева с ответами. За счет того, что функция '''$join$''' работает за разницу высот, и мы объединяем снизу, то, благодаря телескопическому эффекту на работу времени будут влиять только крайние слагаемые, которые порядка глубины дерева.  '''Псевдокод''' '''func''' split(T, k) '''if''' T = nil return $\langle$nil, nil$\rangle$ '''if''' k < T.key $\langle$L',R'$\rangle$ = split(L,k) return $\langle$L',join(R',T.key,R)$\rangle$ '''else''' $\langle$L',R'$\rangle$ = split(R,k) return $\langle$join(L,T.key,L'),R)$\rangle$ Сложность: $\mathcal{O}(\log(n))$ Точно такой же алгоритм в разрезании AVL деревьев. Оно и понятно {{---}} нам нужна лишь корректная функция '''$join$''', работающая за разницу высот. == Преимущества красно-чёрных деревьев ==#Самое главное преимущество красно-черных деревьев в том, что при вставке выполняется не более <tex>O(1)</tex> вращений. Это важно, например, в алгоритме построения [[Динамическая выпуклая оболочка (достаточно log^2 на добавление/удаление)|динамической выпуклой оболочки]]. Ещё важно, что примерно половина вставок и удалений произойдут задаром. #Процедуру балансировки практически всегда можно выполнять параллельно с процедурами поиска, так как алгоритм поиска не зависит от атрибута цвета узлов.#Сбалансированность этих деревьев хуже, чем у [[АВЛ-дерево | АВЛ]], но работа по поддержанию сбалансированности в красно-чёрных деревьях обычно эффективнее. Для балансировки красно-чёрного дерева производится минимальная работа по сравнению с АВЛ-деревьями.#Использует всего $1$ бит дополнительной памяти для хранения цвета вершины. Но на самом деле в современных вычислительных системах память выделяется кратно байтам, поэтому это не является преимуществом относительно, например, АВЛ-дерева, которое хранит $2$ бита. Однако есть реализации красно-чёрного дерева, которые хранят значение цвета в бите. Пример {{---}} Boost Multiindex. В этой реализации уменьшается потребление памяти красно-чёрным деревом, так как бит цвета хранится не в отдельной переменной, а в одном из указателей узла дерева. Красно-чёрные деревья являются наиболее активно используемыми на практике самобалансирующимися деревьями поиска. В частности, ассоциативные контейнеры библиотеки STL(map, set, multiset, multimap) основаны на красно-чёрных деревьях. TreeMap в Java тоже реализован на основе красно-чёрных деревьев.
1. Если брат этого ребёнка красный, то делаем вращение вокруг ребра между отцом == Связь с [[2-3_дерево | 2-3 и братом, тогда брат становится родителем отца. Красим его в чёрный, а отца 2- в красный цвет.4 деревьями]] ==
[[Файл:D_3.png|390px|]]=== Изоморфизм деревьев ===
2Красно-черные деревья изоморфны [[B-дерево | B-деревьям]] $4$ порядка. Если брат текущей вершины Реализация B-деревьев трудна на практике, поэтому для них был чёрнымпридуман аналог, то получаем три случаяназываемый симметричным бинарным B-деревом<ref>[http:* Оба ребёнка у брата //rflinux.blogspot.ru/2011/10/red-black-trees.html Абстрактные типы данных {{---}} Красно-чёрныедеревья (Red black trees)]</ref>. Красим брата Особенностью симметричных бинарных B-деревьев является наличие горизонтальных и вертикальных связей. Вертикальные связи отделяют друг от друга разные узлы, а горизонтальные соединяют элементы, хранящиеся в одном узле B-дерева. Для различения вертикальных и горизонтальных связей вводится новый атрибут узла {{---}} цвет. Только один из элементов узла в B-дереве красится в черный цвет. Горизонтальные связи ведут из черного узла в красный цвет и рассматриваем далее отца вершиныузел, а вертикальные могут вести из любого узла в черный.
[[Файл:D_4Rbtree.pngpng‎|390px750px|]]
* Если у брата правый ребёнок чёрный,а левый красный, то перекрашиваем брата и его левого сына и делаем вращение.=== Корректность сопоставления деревьев ===
[[Файл:D_5Сопоставив таким образом цвета узлам дерева, можно проверить, что полученное дерево удовлетворяет всем свойствам красно-черного дерева.png{{Утверждение|390pxstatement=У красного узла родитель не может быть красного цвета.|proof=В узле 2-4 дерева содержится не более трех элементов, один из которых обязательно красится в черный при переходе к симметричному бинарному B-дереву. Тогда оставшиеся красные элементы, если они есть, подвешиваются к черному. Из этих элементов могут идти ребра в следующий узел 2-4 дерева. В этом узле обязательно есть черная вершина, в нее и направляется ребро. Оставшиеся элементы узла, если они есть, подвешиваются к черной вершине аналогично первому узлу. Таким образом, ребро из красной вершины никогда не попадает в красную, значит у красного элемента родитель не может быть красным.}}{{Утверждение|statement=Число черных узлов на любом пути от листа до вершины одинаково.|proof=В B-дереве глубина всех листьев одинакова, следовательно, одинаково и количество внутренних узлов на каждом пути. Мы сопоставляем чёрный цвет одному элементу внутреннего узла B-дерева. Значит, количество чёрных элементов на любом пути от листа до вершины одинаково.}}{{Утверждение|statement=Корень дерева {{---}} черный.|]]proof=Если в корне один элемент, то он {{---}} чёрный. Если же в корне несколько элементов, то заметим, что один элемент окрашен в чёрный цвет, остальные {{---}} в красный. Горизонтальные связи, соединяющие элементы внутри одного узнала, ведут из чёрного элемента в красный, следовательно, красные элементы будут подвешены к чёрному. Он и выбирается в качестве корня симметричного бинарного B-дерева.}}
* В же у брата правый ребёнок красный, то перекрашиваем брата === Сопоставление операций в цвет отца, его ребёнка и отца - в чёрный, делаем вращение и выходим из алгоритма.деревьях ===
[[Файл:D_6Все операции, совершаемые в B-дереве, сопоставляются операциям в красно-черном дереве. Для этого достаточно доказать, что изменение узла в B-дереве соответствует повороту в красно-черном дереве.png{{Утверждение|390pxstatement=Изменение узла в B-дереве соответствует повороту в красно-черном дереве.|]]proof=В 2-4 дереве изменение узла необходимо при добавлении к нему элемента. Рассмотрим, как будет меняться структура B-дерева и, соответственно, красно-черного дерева при добавлении элемента:
Продолжаем тот же алгоритм* Если в узле содержался один элемент, пока текущая вершина чёрная то происходит добавление второго элемента, соответствующее добавлению красного элемента в красно-черное дерево. * Если в узле содержалось два элемента, то происходит добавление третьего элемента, что соответствует повороту и перекрашиванию вершин в красно-черном дереве. * Если в узле содержалось три элемента, то один из элементов узла становится самостоятельным узлом, к которому подвешиваются узел из пары элементов и мы не дошли до корня узел из одного элемента. Эта операция соответствует перекрашиванию яруса красно-черного дереваиз красного в черный цвет. [[Файл:Rbtree2.png‎|1000px|]]Из рассмотренных случаев ясноПри удалении элемента из узла B-дерева совершаются аналогичные процессы поворота и окраски вершин в красно-черном дереве, только в обратном направлении. Так как все операции в 2-4 дереве происходят за счет изменения узлов, что при удалении выполняется не более трёх вращенийто они эквивалентны соответствующим операциям в красно-черном дереве.}}
{{Теорема|statement=== Объединение красноПриведенное выше сопоставление B-чёрных деревьев ===Объединение двух и красно-чёрных черных деревьев <tex>T_{1}</tex> и <tex>T_{2}</tex> по элементу x выполняется, когда <tex>key[T_{1}] \leqslant x</tex> и <tex>x \leqslant key[T_{2}]</tex>является изоморфизмом.Найдём чёрные высоты деревьев|proof=Доказательство следует непосредственно из приведенных выше утверждений. Предположим также, что <tex>hb[T_{1}] \geqslant hb[T_{2}]</tex>. Тогда в дереве <tex>T_{1}</tex> ищем среди чёрных вершин, имеющих чёрную высоту <tex>hb[T_{2}]</tex>, вершину y с наибольшим ключом. Пусть <tex>T_{y}</tex> — поддерево с корнем y. Объединяем это дерево с <tex>T_{2}</tex> в одно с красным корнем x. Теперь родителем вершины x становится бывший отец вершины y. Осталось восстановить свойства красно-черного дерева, чтобы у красной вершины не было красных детей. Делается аналогично алгоритму добавления вершины.
Т.к. общее время выполнения каждой из операций порядка высоты дерева ,то все они выполняются за <tex>O(\log{n})</tex>==См.также==
== Преимущество красно-чёрных деревьев ==Одно из основных преимуществ красно-чёрных деревьев заключается в том, что процедуру балансировки практически всегда можно выполнять параллельно с процедурами * [[Дерево поиска, т.к. алгоритм наивная реализация|Дерево поиска не зависит от аттрибута цвета узлов. Вращение поддеревьев не может выполнятся одновременно с поиском,наивная реализация]]но при вставке выполняется не более <tex>O(1)</tex> вращений.* [[АВЛ-дерево|АВЛ-дерево]]* [[2-3 дерево|2-3 дерево]]
Красно-чёрные деревья являются наиболее активно используемыми на практике самобалансирующимися деревьями поиска. В частности, ассоциативные контейнеры библиотеки STL (map, set, multiset, multimap) основаны на красно-чёрных деревьях. Легко видеть, что красно-чёрные деревья изометричны 2-3-4 B-деревьям.== Примечания ==Каждый чёрный узел можно объединить с его красными потомками. Результирующий узел будет иметь не более трех ключей и не более четырех потомков.<references/>
==СсылкиИсточники информации==
* [http://ru.wikipedia.org/wiki/%CA%F0%E0%F1%ED%EE-%F7%B8%F0%ED%EE%E5_%E4%E5%F0%E5%E2%EE Википедия {{---}} Красно-чёрное дерево]
* [http://algolist.manual.ru/ds/rbtree.php AlgoList {{---}} Красно-черные деревья]
* [http://lectures.stargeo.ru/alg/algorithms.htm#_Toc241931998 Lectures.stargeo {{---}} Конспект лекций]
* [http://nord.org.ua/static/course/algo_2009/lecture10.pdf Курс kiev-clrs {{---}} Лекция 10. Красно-чёрные деревья]
* [http://rain.ifmo.ru/cat/view.php/vis/trees/red-black-2002 Визуализатор]
* [http://ru.wikipedia.org/wiki/%CA%F0%E0%F1%ED%EE-%F7%B8%F0%ED%EE%E5_%E4%E5%F0%E5%E2%EE Википедия]* [http://algolistrflinux.manualblogspot.ru/ds2011/rbtree.php algolist.manual.ru]* [http:10//lecturesred-black-trees.stargeo.ru/alg/algorithms.htm#_Toc241931998 lectures.stargeo.ru]* [http://nord.org.ua/static/course/algo_2009/lecture10.pdf nord.org.uahtml Абстрактные типы данных {{---}} Красно-чёрные деревья (Red black trees)]
[[Категория:Дискретная математика и алгоритмы]]
[[Категория:Деревья поиска]]
1632
правки

Навигация