Критерий Тарьяна минимальности остовного дерева — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(тире)
(фикс)
Строка 25: Строка 25:
 
Если <tex>uv</tex> минимально — добавим его в <tex>T'</tex>.  
 
Если <tex>uv</tex> минимально — добавим его в <tex>T'</tex>.  
  
По окончании (просмотрели все ребра <tex>T</tex>) <tex>T</tex> совпадет с <tex>T'</tex>.
+
В процессе индукции добавлялись только ребра из <tex>T</tex>, поэтому построенное дерево <tex>T'</tex> совпадет с <tex>T</tex>.
  
 
}}
 
}}

Версия 20:27, 15 января 2011

Теорема (критерий минимальности остовного дерева Тарьяна):
Остовное дерево минимально тогда и только тогда, когда любое ребро не из дерева является максимальным на цикле, который образуется при его добавлении в дерево.
Доказательство:
[math]\triangleright[/math]
Ребро e имеет максимальный вес на образованном цикле

Легко заметить, что остовное дерево, не удовлетворяющее условию, не минимально:

Если существует ребро, не максимальное на образовавшемся цикле мы можем уменьшить вес дерева, добавив это ребро и удалив максимальное.

Теперь докажем, что дерево, удовлетворяющее условию минимально:

Обозначим дерево [math]T[/math], покажем что его можно построить алгоритмом Крускала.

Индукция по количеству ребер в дереве: База: пустое дерево.

Переход: Строим дерево [math]T'[/math] по лемме о безопасном ребре. Рассмотрим минимальное невзятое ребро [math]uv \in T[/math]. Рассмотрим разрез, окружающий одну из двух компонент.

Пусть [math]uv[/math] не минимально в разрезе, тогда существует [math]ab \notin T[/math] такое, что [math]w(ab) \lt w(uv)[/math]. Рассмотрим [math]\{ab\} \cup T[/math]: некое ребро [math]xy \in T[/math], такое что [math]w(xy) \ge w(uv) \gt w(ab)[/math], будет лежать на цикле. Противоречие условию теоремы. Если [math]uv[/math] минимально — добавим его в [math]T'[/math].

В процессе индукции добавлялись только ребра из [math]T[/math], поэтому построенное дерево [math]T'[/math] совпадет с [math]T[/math].
[math]\triangleleft[/math]