Лапы и минимальные по включению барьеры в графе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 50: Строка 50:
 
То есть <tex>\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)</tex><br>
 
То есть <tex>\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)</tex><br>
 
Тогда возможны два случая:
 
Тогда возможны два случая:
#Если выполняется равенство <tex>\mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G)</tex>, то, по определению <tex>B'</tex> является барьером. <br>
+
#Если выполняется равенство <tex> \mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G) </tex>, то, по определению, <tex>B'</tex> является барьером. <br>
#:Но <tex>|B'| < |B| </tex>, а значит, <tex>B</tex> не является минимальным по включению барьером <tex>\Rightarrow</tex> противоречие условию. <br>
+
#:Но <tex>|B'| < |B| </tex>, а значит, <tex>B</tex> не является минимальным по включению барьером <tex>\Rightarrow</tex> противоречие условию теоремы. <br>
 
#Если <tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G)</tex>, то <br>
 
#Если <tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G)</tex>, то <br>
 
#:<tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\</tex>, что противоречит [[Декомпозиция Эдмондса-Галлаи#Th_Berge| теореме Бержа]]. <br>
 
#:<tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\</tex>, что противоречит [[Декомпозиция Эдмондса-Галлаи#Th_Berge| теореме Бержа]]. <br>
Строка 74: Строка 74:
  
 
== Источники информации ==
 
== Источники информации ==
* Карпов В. Д. - Теория графов, стр 55
+
* Карпов Д. В. - Теория графов, стр 55
  
  

Версия 01:21, 15 декабря 2017

Определение:
Лапой (англ. paw) называется индуцированный подграф графа [math]G[/math], изоморфный двудольному графу [math]K_{1,\;3}[/math].
Лапа




Определение:
Центром лапы (англ. paw center) называется вершина степени три в лапе.




Определение:
Минимальным по включению барьером (англ.minimum barrier) называется барьер минимальной мощности.




Теорема:
Пусть [math]B[/math] — минимальный по включению барьер графа [math]G[/math], тогда каждая вершина [math]B[/math] — центр лапы в [math]G[/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math]x\in B[/math] не является центром лапы. Тогда [math]x[/math] смежна не более чем с двумя компонентами связности графа [math]G \setminus B[/math].
Введём обозначение [math]B' = B\setminus x[/math].
Найдём соотношение между [math]\mathrm{odd}[/math][math](G\setminus B')\ [/math] и [math]\mathrm{odd}(G\setminus B)\ [/math].
Для этого рассмотрим всевозможные случаи количества компонент связности в графе [math]G \setminus B[/math], с которыми смежна [math]x[/math], и посмотрим на их четности (компоненты в [math]B[/math] нас не интересуют).

  1. [math]x[/math] смежна с двумя компонентами связности графа [math]G \setminus B[/math].
    [math]x[/math] смежна с двумя компонентами связности из [math]G \setminus B[/math]

    a) Одна компонента четная, другая — нечетная. Тогда [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
    b) Обе компоненты чётные: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]
    c) Обе компоненты нечётные: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
  2. [math]x[/math] смежна с одной компонентой связности графа [math]G \setminus B[/math].
    a) Она чётная: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]
    b) Она нечётная: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
  3. [math]x[/math] не смежна ни с какой компонентой связности графа [math]G \setminus B[/math]: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]

Рассмотрев случаи, видим, что для любого из них выполнено: [math]\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 [/math]
[math]B[/math] — барьер [math] \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) [/math]
Тогда [math]\mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G)[/math]
То есть [math]\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)[/math]
Тогда возможны два случая:

  1. Если выполняется равенство [math] \mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G) [/math], то, по определению, [math]B'[/math] является барьером.
    Но [math]|B'| \lt |B| [/math], а значит, [math]B[/math] не является минимальным по включению барьером [math]\Rightarrow[/math] противоречие условию теоремы.
  2. Если [math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{def}(G)[/math], то
    [math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\[/math], что противоречит теореме Бержа.
В обоих случаях мы пришли к противоречию, значит, наше предположение неверно и [math]\forall x\in B[/math] является центром лапы в [math]G[/math].
[math]\triangleleft[/math]
Утверждение (D.P.Sumner, M.Las Vergnas, следствие из теоремы):
Пусть [math]G[/math] — связный граф, не содержащий лапы, [math]v(G)[/math] чётно. Тогда [math]G[/math] имеет совершенное паросочетание.
[math]\triangleright[/math]

Пусть [math]B[/math] — минимальный по включению барьер графа [math]G[/math]. Тогда, по предыдущей теореме имеем [math]B = \varnothing [/math].
По условию [math]G[/math] — связный граф с чётным числом вершин [math]\Rightarrow [/math] [math]\mathrm{odd}(G\setminus \varnothing )\ = 0 [/math].

[math]B[/math] — барьер [math]\Leftrightarrow \mathrm{def}(G) = \mathrm{odd}(G\setminus \varnothing) - |\varnothing|\ = 0 [/math]. Значит, количество вершин, не покрытых максимальным паросочетанием, равно 0, то есть существует совершенное паросочетание.
[math]\triangleleft[/math]

См. также

Источники информации

  • Карпов Д. В. - Теория графов, стр 55