Лапы и минимальные по включению барьеры в графе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 2: Строка 2:
 
|id = paw
 
|id = paw
 
|neat = 1  
 
|neat = 1  
|definition='''Лапой''' (англ. ''paw'') называется индуцированный подграф графа <tex>G</tex>, [[Основные определения теории графов#isomorphic_graphs | изоморфный]] [[Основные определения теории графов#defBiparateGraph | двудольному]] графу <tex>K_{1,\;3}</tex>.
+
|definition = '''Лапой''' (англ. ''paw'') называется индуцированный подграф графа <tex>G</tex>, [[Основные определения теории графов#isomorphic_graphs | изоморфный]] [[Основные определения теории графов#defBiparateGraph | двудольному]] графу <tex>K_{1,\;3}</tex>.
 
}} [[Файл:Lapa.png|180px|thumb|right|Лапа]]
 
}} [[Файл:Lapa.png|180px|thumb|right|Лапа]]
  
Строка 13: Строка 13:
 
|id = paw_center
 
|id = paw_center
 
|neat = 1  
 
|neat = 1  
|definition='''Центром лапы''' (англ. ''paw center'') называется вершина [[Основные определения теории графов#def_graph_degree_1| степени]] три в лапе.
+
|definition ='''Центром лапы''' (англ. ''paw center'') называется вершина [[ Основные определения теории графов#def_graph_degree_1 | степени ]] три в лапе.
 
}}
 
}}
  
Строка 23: Строка 23:
 
|neat = 1  
 
|neat = 1  
 
|id = minimum_barrier
 
|id = minimum_barrier
|definition='''Минимальным по включению [[Декомпозиция Эдмондса-Галлаи#barrier | барьером]] '''(англ.''minimum barrier'') называется барьер минимальной мощности.
+
|definition = '''Минимальным по включению [[ Декомпозиция Эдмондса-Галлаи#barrier | барьером]] '''(англ.''minimum barrier'') называется барьер минимальной мощности.
 
}}
 
}}
  
Строка 31: Строка 31:
  
 
{{Теорема
 
{{Теорема
|id=theorem1
+
|id = theorem1
 
|statement=Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>, тогда каждая вершина <tex>B</tex> {{---}} центр лапы в <tex>G</tex>.
 
|statement=Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>, тогда каждая вершина <tex>B</tex> {{---}} центр лапы в <tex>G</tex>.
|proof=Пусть <tex>x\in B</tex> не является центром лапы. Тогда <tex>x</tex> смежна не более чем с двумя компонентами связности графа <tex>G \setminus B</tex>.<br>  
+
|proof=Пусть <tex>x\in B</tex> не является центром лапы. Тогда <tex>x</tex> смежна не более чем с двумя компонентами связности графа <tex>G \setminus B</tex>. <br>  
 
Введём обозначение <tex>B'  =  B\setminus  x</tex>.<br>
 
Введём обозначение <tex>B'  =  B\setminus  x</tex>.<br>
 
Найдём соотношение между [[Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex>]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br>
 
Найдём соотношение между [[Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex>]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br>
 
Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex> нас не интересуют).<br>
 
Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex> нас не интересуют).<br>
 
# <tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex>.[[Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности из <tex>G \setminus B</tex>]]<br>
 
# <tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex>.[[Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности из <tex>G \setminus B</tex>]]<br>
#:a) Одна компонента четная, другая {{---}} нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>
+
#: a) Одна компонента четная, другая {{---}} нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>
#:b) Обе компоненты чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br>
+
#: b) Обе компоненты чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br>
#:c) Обе компоненты нечётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>
+
#: c) Обе компоненты нечётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>
 
#<tex>x</tex> смежна с одной компонентой связности графа <tex>G \setminus B</tex>.<br>
 
#<tex>x</tex> смежна с одной компонентой связности графа <tex>G \setminus B</tex>.<br>
#:a) Она чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br>
+
#: a) Она чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br>
#:b) Она нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>
+
#: b) Она нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>
 
# <tex>x</tex> не смежна ни с какой компонентой связности графа <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br>
 
# <tex>x</tex> не смежна ни с какой компонентой связности графа <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br>
 
Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>
 
Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>

Версия 01:25, 15 декабря 2017

Определение:
Лапой (англ. paw) называется индуцированный подграф графа [math]G[/math], изоморфный двудольному графу [math]K_{1,\;3}[/math].
Лапа




Определение:
Центром лапы (англ. paw center) называется вершина степени три в лапе.




Определение:
Минимальным по включению барьером (англ.minimum barrier) называется барьер минимальной мощности.




Теорема:
Пусть [math]B[/math] — минимальный по включению барьер графа [math]G[/math], тогда каждая вершина [math]B[/math] — центр лапы в [math]G[/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math]x\in B[/math] не является центром лапы. Тогда [math]x[/math] смежна не более чем с двумя компонентами связности графа [math]G \setminus B[/math].
Введём обозначение [math]B' = B\setminus x[/math].
Найдём соотношение между [math]\mathrm{odd}[/math][math](G\setminus B')\ [/math] и [math]\mathrm{odd}(G\setminus B)\ [/math].
Для этого рассмотрим всевозможные случаи количества компонент связности в графе [math]G \setminus B[/math], с которыми смежна [math]x[/math], и посмотрим на их четности (компоненты в [math]B[/math] нас не интересуют).

  1. [math]x[/math] смежна с двумя компонентами связности графа [math]G \setminus B[/math].
    [math]x[/math] смежна с двумя компонентами связности из [math]G \setminus B[/math]

    a) Одна компонента четная, другая — нечетная. Тогда [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
    b) Обе компоненты чётные: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]
    c) Обе компоненты нечётные: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
  2. [math]x[/math] смежна с одной компонентой связности графа [math]G \setminus B[/math].
    a) Она чётная: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]
    b) Она нечётная: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
  3. [math]x[/math] не смежна ни с какой компонентой связности графа [math]G \setminus B[/math]: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]

Рассмотрев случаи, видим, что для любого из них выполнено: [math]\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 [/math]
[math]B[/math] — барьер [math] \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) [/math]
Тогда [math]\mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G)[/math]
То есть [math]\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)[/math]
Тогда возможны два случая:

  1. Если выполняется равенство [math] \mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G) [/math], то, по определению, [math]B'[/math] является барьером.
    Но [math]|B'| \lt |B| [/math], а значит, [math]B[/math] не является минимальным по включению барьером [math]\Rightarrow[/math] противоречие условию теоремы.
  2. Если [math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{def}(G)[/math], то
    [math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\[/math], что противоречит теореме Бержа.
В обоих случаях мы пришли к противоречию, значит, наше предположение неверно и [math]\forall x\in B[/math] является центром лапы в [math]G[/math].
[math]\triangleleft[/math]
Утверждение (D.P.Sumner, M.Las Vergnas, следствие из теоремы):
Пусть [math]G[/math] — связный граф, не содержащий лапы, [math]v(G)[/math] чётно. Тогда [math]G[/math] имеет совершенное паросочетание.
[math]\triangleright[/math]

Пусть [math]B[/math] — минимальный по включению барьер графа [math]G[/math]. Тогда, по предыдущей теореме имеем [math]B = \varnothing [/math].
По условию [math]G[/math] — связный граф с чётным числом вершин [math]\Rightarrow [/math] [math]\mathrm{odd}(G\setminus \varnothing )\ = 0 [/math].

[math]B[/math] — барьер [math]\Leftrightarrow \mathrm{def}(G) = \mathrm{odd}(G\setminus \varnothing) - |\varnothing|\ = 0 [/math]. Значит, количество вершин, не покрытых максимальным паросочетанием, равно 0, то есть существует совершенное паросочетание.
[math]\triangleleft[/math]

См. также

Источники информации

  • Карпов Д. В. - Теория графов, стр 55