Редактирование: Лемма Бёрнсайда и Теорема Пойа

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 26: Строка 26:
 
|statement=Число орбит равно средней мощности стабилизатора элементов группы <tex>G</tex>. <math>|X/G| = \dfrac{1} {|G|}\sum\limits_{g \in G}|St(g)|</math>.   
 
|statement=Число орбит равно средней мощности стабилизатора элементов группы <tex>G</tex>. <math>|X/G| = \dfrac{1} {|G|}\sum\limits_{g \in G}|St(g)|</math>.   
 
|proof=
 
|proof=
Так как <tex>St(g)</tex> {{---}} стабилизатор элемента <tex>g</tex>, то по определению <math>\sum\limits_{g \in G}|St(g)| = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</math>.
+
Так как <tex>St(g)</tex> {{---}} стабилизатор элемента <tex>g</tex>, то по определению <tex>\sum\limits_{g \in G}|St(g)| = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</tex>.
  
 
Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство:
 
Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство:

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)