Редактирование: Лемма Бёрнсайда и Теорема Пойа

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 60: Строка 60:
 
|id=teorPo.  
 
|id=teorPo.  
 
|author=Пойа, '''англ.''' Pólya enumeration theorem
 
|author=Пойа, '''англ.''' Pólya enumeration theorem
|statement= <math>C = \dfrac{1}{|G|}\sum\limits_{g \in G} l^{P(g)}</math>  ,где <tex>C</tex> {{---}} кол-во различных классов эквивалентности, <tex>P(g)</tex> {{---}} кол-во циклов в перестановке <tex>g</tex>, <tex>l</tex> {{---}} кол-во различных состояний одного элемента.
+
|statement= <tex> C =</tex> <tex> \dfrac{1} {|G|}</tex><tex>\sum\limits_{g \in G} l^{P(g)}</tex>  ,где <tex>C</tex> {{---}} кол-во различных классов эквивалентности, <tex>P(g)</tex> {{---}} кол-во циклов в перестановке <tex>g</tex>, <tex>l</tex> {{---}} кол-во различных состояний одного элемента.
 
|proof=Для доказательства этой теоремы достаточно установить следующее равенство
 
|proof=Для доказательства этой теоремы достаточно установить следующее равенство
 
<math>|St(g)| = l^{P(g)}</math>
 
<math>|St(g)| = l^{P(g)}</math>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)